- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 椭圆中的直线过定点问题
- 椭圆中存在定点满足某条件问题
- 椭圆中的定值问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,点F为椭圆C:
(a>b>0)的左焦点,点A,B分别为椭圆C的右顶点和上顶点,点P(
,
)在椭圆C上,且满足OP∥AB.

(1)求椭圆C的方程;
(2)若过点F的直线l交椭圆C于D,E两点(点D位于x轴上方),直线AD和AE的斜率分别为
和
,且满足
﹣
=﹣2,求直线l的方程.




(1)求椭圆C的方程;
(2)若过点F的直线l交椭圆C于D,E两点(点D位于x轴上方),直线AD和AE的斜率分别为




已知椭圆
的一个顶点为
,离心率
,直线
交椭圆于
、
两点.
(1)若直线
的方程为
,求弦
的长;
(2)如果
的重心恰好为椭圆的右焦点
,求直线
方程的一般式.






(1)若直线



(2)如果



已知椭圆
过点
,其离心率
.
(1)求椭圆
的方程;
(2)若直线
不经过点
,且与椭圆
相交于
两点(
、
不重合),若直线
与直线
的斜率之积为
.
(ⅰ)证明:
过定点,并求出定点坐标;
(ⅱ)求
的面积的最大值.



(1)求椭圆

(2)若直线









(ⅰ)证明:

(ⅱ)求

已知椭圆
的左、右焦点与其短轴的一个端点是正三角形的三个顶点,点
在椭圆
上,直线
与椭圆
交于
,
两点,与
轴、
轴分别相交于点
和点
,且
,点
是点
关于
轴的对称点,
的延长线交椭圆于点
,过点
、
分别作
轴的垂线,垂足分别为
、
.
(1)求椭圆
的方程;
(2)是否存在直线
,使得点
平分线段
,
?若存在,求出直线
的方程;若不存在,请说明理由.






















(1)求椭圆

(2)是否存在直线





设椭圆
的左、右焦点分别为
,
,下顶点为
,
为坐标原点,点
到直线
的距离为
,
为等腰直角三角形.
(1)求椭圆
的标准方程;
(2)直线
与椭圆
交于
,
两点,若直线
与直线
的斜率之和为
,证明:直线
恒过定点,并求出该定点的坐标.









(1)求椭圆

(2)直线








已知椭圆C:
的离心率
,左、右焦点分别为
,抛物线
的焦点F恰好是该椭圆的一个顶点.
(1)求椭圆C的方程;
(2)已知圆M:
的切线
与椭圆相交于A、B两点,那么以AB为直径的圆是否经过定点?如果是,求出定点的坐标;如果不是,请说明理由,




(1)求椭圆C的方程;
(2)已知圆M:


已知椭圆
:
离心率为
,直线
被椭圆截得的弦长为
.
(1)求椭圆方程;
(2)设直线
交椭圆
于
,
两点,且线段
的中点
在直线
上,求证:线段
的中垂线恒过定点.





(1)求椭圆方程;
(2)设直线








已知椭圆
:
的离心率为
,且椭圆上一点
的坐标为
.
(1)求椭圆
的方程;
(2)设直线
与椭圆
交于
,
两点,且以线段
为直径的圆过椭圆的右顶点
,求证:直线
恒过
轴上一定点.





(1)求椭圆

(2)设直线








如图,已知椭圆
的上顶点为
,离心率为
.

(1)求椭圆
的方程;
(2)若过点
作圆
的两条切线分别与椭圆
相交于点
(不同于点
).当
变化时,试问直线
是否过某个定点
若是,求出该定点;若不是,请说明理由.




(1)求椭圆

(2)若过点







