- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 椭圆中的直线过定点问题
- 椭圆中存在定点满足某条件问题
- 椭圆中的定值问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
的左、右焦点为
、
.
(1)求以
为焦点,原点为顶点的抛物线方程;
(2)若椭圆
上点
满足
,求
的纵坐标
;
(3)设
,若椭圆
上存在两个不同点
、
满足
,证明:直线
过定点,并求该定点的坐标.



(1)求以

(2)若椭圆





(3)设






已知椭圆
的离心率
,左、右焦点分别为
,点
,点
在线段
的中垂线上.
(1)求椭圆
的方程;
(2)设直线
与椭圆
交于
两点,直线
与
的倾斜角分别为
,且
,求证:直线
过定点,并求该定点的坐标.






(1)求椭圆

(2)设直线









已知椭圆
的一个焦点与抛物线
的焦点重合,且椭圆
的离心率为
.
(1)求椭圆
的标准方程;
(2)直线
交椭圆
于
、
两点,线段
的中点为
,直线
是线段
的垂直平分线,求证:直线
过定点,并求出该定点的坐标.




(1)求椭圆

(2)直线









已知椭圆
的一个焦点与抛物线
的焦点重合,且此抛物线的准线被椭圆
截得的弦长为
.
(1)求椭圆
的标准方程;
(2)直线
交椭圆
于
、
两点,线段
的中点为
,直线
是线段
的垂直平分线,试问直线
是否过定点?若是,请求出该定点的坐标;若不是,请说明理由.




(1)求椭圆

(2)直线









设
是椭圆
上的点,
,
是焦点,离心率
.
(1)求椭圆的方程;
(2)设
,
是椭圆上的两点,且
,(
是定数),问线段
的垂直平分线是否过定点?若过定点,求出此定点的坐标,若不存在,说明理由.





(1)求椭圆的方程;
(2)设





已知动点
满足:
.
(Ⅰ)求动点
的轨迹
的方程;
(Ⅱ)设过点
的直线
与曲线
交于
两点,点
关于
轴的对称点为
(点
与点
不重合),证明:直线
恒过定点,并求该定点的坐标.


(Ⅰ)求动点


(Ⅱ)设过点










已知椭圆
的焦点到短轴的端点的距离为
,离心率为
.
(1)求椭圆
的方程;
(2)过点
的直线
交椭圆
于
两点,过点
作平行于
轴的直线
,交直线
于点
,求证:直线
恒过定点.



(1)求椭圆

(2)过点










已知
,椭圆
的离心率为
,直线
与
交于
两点,
长度的最大值为
.
(1)求
的方程;
(2)直线
与
轴的交点为
,当直线
变化(
不与
轴重合)时,若
,求点
的坐标.








(1)求

(2)直线








如图,已知椭圆
的左、右两个焦点分别为
设
,若
为正三角形且周长为
.

(1)求椭圆
的标准方程;
(2)若过点
且斜率为
的直线与椭圆
相交于不同的两点
,是否存在实数
使
成立,若存在,求出
的值,若不存在,请说明理由;
(3)若过点
的直线与椭圆
相交于不同的两点
两点,
记的面积记为
,求
的取值范围.






(1)求椭圆

(2)若过点







(3)若过点






已知:椭圆
的焦点在
轴上,左焦点
与短轴两顶点围成面积为
的等腰直角三角形,直线
与椭圆
交于不同两点
、
(
、
都在
轴上方),且
.
(1)求椭圆
的标准方程;
(2)当
为椭圆与
轴正半轴的交点时,求直线
的方程;
(3)对于动直线
,是否存在一个定点,无论
如何变化,直线
总经过此定点?若存在,求出该定点的坐标;若不存在,请说明理由.












(1)求椭圆

(2)当



(3)对于动直线


