刷题首页
题库
高中数学
题干
已知椭圆
,四点
,
,
,
中恰有三点在椭圆
上.
(Ⅰ)求
的方程;
(Ⅱ)设直线
与椭圆
相交于
两点.若直线
与直线
的斜率的和为
,证明:
必过定点,并求出该定点的坐标.
上一题
下一题
0.99难度 解答题 更新时间:2019-08-10 12:16:06
答案(点此获取答案解析)
同类题1
椭圆
的左右顶点分别
,过点
作
轴的垂线
,点
是直线
上的一点,连接
交椭圆开点
,坐标原点为
,且
,则
________.
同类题2
中心在原点O,焦点F
1
、F
2
在x轴上的椭圆E经过点C(2, 2),且
(I )求椭圆E的方程;
(II)垂直于OC的直线l与椭圆E交于A、B两点,当以AB为直径的圆P与y轴相切时,求直线l的方程和圆P的方程.
同类题3
已知抛物线
与
椭圆
的一个交点为
,点
是
的焦点,且
.
(1)求
与
的方程;
(2)设
为坐标原点,在第一象限内,椭圆
上是否存在点
,使过
作
的垂线交抛物线
于
,直线
交
轴于
,且
?若存在,求出点
的坐标和
的面积;若不存在,说明理由.
同类题4
已知椭圆
经过两点
.
(1)求椭圆
的方程;
(2)若直线
交椭圆
于两个不同的点
是坐标原点,求
的面积
.
同类题5
已知椭圆
的离心率为
,点
在椭圆上.
(1)求椭圆
的方程;
(2)设
,过点
作直线
交椭圆
于不同于
的
两点,直线
的斜率分别为
,试问:
是否为定值?若是,求出定值,若不是,请说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据椭圆过的点求标准方程
椭圆中的直线过定点问题