- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 求椭圆中的弦长
- + 椭圆中三角形(四边形)的面积
- 椭圆中的通径问题
- 椭圆的焦半径与焦点弦问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆C:
(a>b>0)的一个顶点为A(2,0),离心率为
.直线y=k(x-1)与椭圆C交于不同的两点M,N.
(1)求椭圆C的方程;
(2)当△AMN的面积为
时,求k的值.


(1)求椭圆C的方程;
(2)当△AMN的面积为

已知点
,椭圆
:
的离心率为
,
是椭圆
的右焦点,直线
的斜率为
,
为坐标原点. 设过点
的动直线
与
相交于
两点.
(1)求
的方程;
(2)是否存在这样的直线
,使得
的面积为
,若存在,求出
的方程;若不存在,请说明理由.













(1)求

(2)是否存在这样的直线




已知椭圆
的离心率为
,点
在
上.
(1) 求椭圆的方程;
(2) 设
分别是椭圆
的上、下焦点,过
的直线
与椭圆
交于不同的两点
,求
的内切圆的半径的最大值.




(1) 求椭圆的方程;
(2) 设







已知椭圆
:
的右焦点为
,离心率为
,
是椭圆
上位于第一象限内的任意一点,
为坐标原点,
关于
的对称点为
,
,圆
:
.

(1)求椭圆
和圆
的标准方程;
(2)过点
作
与圆
相切于点
,使得点
,点
在
的两侧.求四边形
面积的最大值.














(1)求椭圆


(2)过点








已知椭圆
的离心率e满足
,右顶点为A,上顶点为B,点C(0,-2),过点C作一条与y轴不重合的直线l,直线l交椭圆E于P,Q两点,直线BP,BQ分别交x轴于点M,N;当直线l经过点A时,l的斜率为
.

(1)求椭圆E的方程;
(2)证明:
为定值.




(1)求椭圆E的方程;
(2)证明:

已知椭圆
:
(
)的左、右焦点分别是
、
,
是椭圆上一点,
为
的内切圆圆心,
,且
的周长为6.
(1)求椭圆
的方程;
(2)已知过点
的直线与椭圆
交于
,
两点,若
,求四边形
面积的最大值.










(1)求椭圆

(2)已知过点






已知椭圆
的离心率
,一个焦点在直线
上,若直线
与椭圆交于
,
两点,
为坐标原点,直线
的斜率为
,直线
的斜率为
.
(1)求该椭圆的方程.
(2)若
,试问
的面积是否为定值?若是,求出这个定值;若不是,请说明理由.











(1)求该椭圆的方程.
(2)若

