- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 求椭圆中的弦长
- + 椭圆中三角形(四边形)的面积
- 椭圆中的通径问题
- 椭圆的焦半径与焦点弦问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知A、B、C是椭圆W:
上的三个点,O是坐标原点.
(I)当点B是W的右顶点,且四边形OABC为菱形时,求此菱形的面积.
(II)当点B不是W的顶点时,判断四边形OABC是否可能为菱形,并说明理由.

(I)当点B是W的右顶点,且四边形OABC为菱形时,求此菱形的面积.
(II)当点B不是W的顶点时,判断四边形OABC是否可能为菱形,并说明理由.
已知椭圆
经过点
,其左焦点为
.过
点的直线
交椭圆于
、
两点,交
轴的正半轴于点
.

(1)求椭圆
的方程;
(2)过点
且与
垂直的直线交椭圆于
、
两点,若四边形
的面积为
,求直线
的方程;
(3)设
,
,求证:
为定值.










(1)求椭圆

(2)过点







(3)设



已知:椭圆
的右焦点为
为上顶点,
为坐标原点,若
的面积为2,且椭圆的离心率为
.
(1)求椭圆的方程;
(2)直线
交椭圆于
两点,当
为
的垂心时,求
的面积.





(1)求椭圆的方程;
(2)直线





设椭圆
的右焦点为
,离心率为
,过点
且与
轴垂直的直线被椭圆截得的线段长为
.
(1)求椭圆
的方程;
(2)若
上存在两点
,椭圆
上存在两个
点满足:
三点共线,
三点共线,且
,求四边形
的面积的最小值.






(1)求椭圆

(2)若








已知椭圆
的左、右焦点分别为

,过点
且斜率为
的直线和以椭圆的右顶点为圆心,短半轴为半径的圆相切.
(1)求椭圆的方程;
(2)椭圆的左、右顶点分为A,B,过右焦点
的直线l交椭圆于P,Q两点,求四边形APBQ面积的最大值.







(1)求椭圆的方程;
(2)椭圆的左、右顶点分为A,B,过右焦点

已知曲线
,直线
经过点
与
相交于
、
两点.

(1)若
且
,求证:
必为
的焦点;
(2)设
,若点
在
上,且
的最大值为
,求
的值;
(3)设
为坐标原点,若
,直线
的一个法向量为
,求
面积的最大值.







(1)若




(2)设






(3)设





已知
,
是椭圆
:
短轴的两个端点,点
为坐标原点,点
是椭圆
上不同于
,
的动点,若直线
,
分别与直线
交于点
,
,则
面积的最小值为( )















A.![]() | B.![]() | C.![]() | D.![]() |
已知两动圆
和
(
),把它们的公共点的轨迹记为曲线
,若曲线
与
轴的正半轴的交点为
,且曲线
上的相异两点
满足:
.
(1)求曲线
的轨迹方程;
(2)证明直线
恒经过一定点,并求此定点的坐标;
(3)求
面积
的最大值.










(1)求曲线

(2)证明直线

(3)求

