- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 直线与椭圆的位置关系
- 求直线与椭圆的交点坐标
- 讨论椭圆与直线的位置关系
- 求椭圆的切线方程
- 根据直线与椭圆的位置关系求参数或范围
- 椭圆的弦长、焦点弦
- 椭圆的中点弦
- 椭圆中的定点、定值
- 椭圆中的定直线
- 双曲线的弦长、焦点弦
- 双曲线的中点弦
- 双曲线中的定点、定值
- 双曲线中的定直线
- 直线与抛物线的位置关系
- 抛物线的弦长
- 抛物线焦点弦的性质
- 抛物线中的参数范围及最值
- 抛物线中的定点、定值
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
的中心在原点,一个焦点为
,且
经过点
.
(1)求
的方程;
(2)设
与
轴的正半轴交于点
,直线
:
与
交于
、
两点(
不经过
点),且
.证明:直线
经过定点,并求出该定点的坐标.




(1)求

(2)设












已知圆
的圆心是椭圆
(
)的右焦点,过椭圆的左焦点和上顶点的直线与圆
相切.
(I)求椭圆
的方程;
(II)椭圆
上有两点
、
,
、
斜率之积为
,求
的值.






(I)求椭圆

(II)椭圆







已知椭圆
的左、右焦点为
,点
在椭圆
上.
(1)设点
到直线
的距离为
,证明:
为定值;
(2)若
是椭圆
上的两个动点(都不与
重合),直线
的斜率互为相反数,求直线
的斜率(结果用
表示)




(1)设点




(2)若





