- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 根据焦点或准线写出抛物线的标准方程
- 根据定义求抛物线的标准方程
- + 根据抛物线上的点求标准方程
- 求抛物线的轨迹方程
- 求实际问题中的抛物线方程
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知抛物线
的焦点为F,点P为抛物线C上一点,
,O为坐标原点,
.
(1)求抛物线C的方程;
(2)设Q为抛物线C的准线上一点,过点F且垂直于OQ的直线交抛物线C于A,B两点记
,
的面积分别为
,求
的取值范围.



(1)求抛物线C的方程;
(2)设Q为抛物线C的准线上一点,过点F且垂直于OQ的直线交抛物线C于A,B两点记





已知抛物线
上一点
到焦点F的距离
.
(1)求抛物线C的方程;
(2)设直线l与抛物C交于A,B两点(A,B异于点P),且
,试判断直线l是否过定点?若过定点,求出该定点的坐标;若不过定点,请说明理由.



(1)求抛物线C的方程;
(2)设直线l与抛物C交于A,B两点(A,B异于点P),且

已知抛物线
的焦点为
,过点
的直线交抛物线
于
和
两点.
(1)当
时,求直线
的方程;
(2)若过点
且垂直于直线
的直线
与抛物线
交于
两点,记
与
的面积分别为
,求
的最小值.






(1)当


(2)若过点









已知抛物线C:
的通经长为4.
(1)求抛物线C的标准方程;
(2)若直线l与抛物线C交于P,Q两点,M(3,2)是线段PQ的中点,求直线l的方程.

(1)求抛物线C的标准方程;
(2)若直线l与抛物线C交于P,Q两点,M(3,2)是线段PQ的中点,求直线l的方程.
已知抛物线C:
的焦点为F,直线
与
轴的交点为P,与C的交点为Q,且
.
(Ⅰ)求C的方程;
(Ⅱ)点
在抛物线C上,是否存在直线
与C交于点
,使得△
是以
为斜边的直角三角形?若存在,求出直线
的方程;若不存在说明理由.




(Ⅰ)求C的方程;
(Ⅱ)点






已知直线
与抛物线
交于O和E两点,
.
(1)求抛物线C的方程;
(2)过点
的直线交抛物线C于A、B两点,P为
上一点,PA、PB与x轴相交于M、N两点,问M、N两点的横坐标的乘积
是否为定值?如果是定值,求出该定值,否则说明理由.



(1)求抛物线C的方程;
(2)过点


