- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 根据焦点或准线写出抛物线的标准方程
- 根据定义求抛物线的标准方程
- + 根据抛物线上的点求标准方程
- 求抛物线的轨迹方程
- 求实际问题中的抛物线方程
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知抛物线
过点
(Ⅰ)求抛物线的方程和焦点坐标;
(Ⅱ)过点
的直线
与抛物线交于两点
,点
关于
轴的对称点为
,试判断直线
是否过定点,并加以证明.


(Ⅰ)求抛物线的方程和焦点坐标;
(Ⅱ)过点







已知抛物线
:
的焦点为
,点
在抛物线
上,
.

(1)求抛物线
的标准方程;
(2)如图,
为抛物线
的准线上任一点,过点
作抛物线
在其上点处的切线
,
,切点分别为
,
,直线
与直线
,
分别交于
,
两点,点
,
的纵坐标分别为
,
,求
的值.







(1)求抛物线

(2)如图,


















已知圆
和抛物线
,圆
与抛物线
的准线交于
、
两点,
的面积为
,其中
是
的焦点.
(1)求抛物线
的方程;
(2)不过原点
的动直线
交该抛物线于
,
两点,且满足
,设点
为圆
上任意一动点,求当动点
到直线
的距离最大时直线
的方程.










(1)求抛物线

(2)不过原点










已知顶点是坐标原点,对称轴是
轴的抛物线经过点A
.
(Ⅰ)、求抛物线的标准方程.
(Ⅱ)、直线
过定点
,斜率为
,当
为何值时,直线
与抛物线有两个公共点?


(Ⅰ)、求抛物线的标准方程.
(Ⅱ)、直线





已知抛物线y2=2px(p>0)上任意一点到直线y=x+2的距离的最小值为
.
(1)求抛物线的方程;
(2)过(3,0)且斜率为1的直线交抛物线于D,H两点,将线段DH向左平移3个单位长度至D1H1,设
和
分别表示△EDH和△ED1H1的面积,问在抛物线上是否存在点E,使得
最大?若存在,求出最大值;若不存在,请说明理由.

(1)求抛物线的方程;
(2)过(3,0)且斜率为1的直线交抛物线于D,H两点,将线段DH向左平移3个单位长度至D1H1,设



如图,设抛物线方程为x2=2py(p>0),M为直线y=-2p上任意一点,过M引抛物线的切线,切点分别为A,B.
(Ⅰ)求证:A,M,B三点的横坐标成等差数列;
(Ⅱ)已知当M点的坐标为(2,-2p)时,
,求此时抛物线的方程;
(Ⅲ)是否存在点M,使得点C关于直线AB的对称点D在抛物线
上,其中,点C满足
(O为坐标原点).若存在,求出所有适合题意的点M的坐标;若不存在,请说明理由.
(Ⅰ)求证:A,M,B三点的横坐标成等差数列;
(Ⅱ)已知当M点的坐标为(2,-2p)时,

(Ⅲ)是否存在点M,使得点C关于直线AB的对称点D在抛物线



在平面直角坐标系



(1)求抛物线C的标准方程;
(2)求过点F,且与直线OA垂直的直线的方程;
(3)设过点




(题文)已知点
是抛物线
的焦点,点
是抛物线
上一点,且
,
的方程为
,过点
作直线
,与抛物线
和
依次交于
.(如图所示)
(1)求抛物线
的方程;
(2)求
的最小值.












(1)求抛物线

(2)求


已知抛物线
过点
,
是
上一点,斜率为
的直线
交
于不同两点
(
不过
点),且
的重心的纵坐标为
.
(1)求抛物线
的方程,并求其焦点坐标;
(2)记直线
的斜率分别为
,求
的值.












(1)求抛物线

(2)记直线



已知
是抛物线
上不同两点.
(1)设直线
与
轴交于点
,若
两点所在的直线方程为
,且直线
恰好平分
,求抛物线
的标准方程.
(2)若直线
与
轴交于点
,与
轴的正半轴交于点
,且
,是否存在直线
,使得
?若存在,求出直线
的方程;若不存在,请说明理由.


(1)设直线








(2)若直线








