刷题首页
题库
高中数学
题干
已知抛物线
的焦点
,抛物线上一点
点纵坐标为2,
.
(1)求抛物线的方程;
(2)已知抛物线
与直线
交于
两点,
轴上是否存在点
,使得当
变动时,总有
?说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2019-03-12 01:09:16
答案(点此获取答案解析)
同类题1
在平面直角坐标系
中,已知抛物线
上的点
到焦点
的距离为2.
(1)求抛物线的方程;
(2)如图,点
是抛物线上异于原点的点,抛物线在点
处的切线与
轴相交于点
,直线
与抛物线相交于
两点,求
面积的最小值.
同类题2
如图,在平面直角坐标系
中,设点
,直线
:
,点
在直线
上移动,
是线段
与
轴的交点,过
、
分别作直线
、
,使
,
,
.
(1)求动点
的轨迹
的方程;
(2)已知⊙
:
,过抛物线
上一点
作两条直线与⊙
相切于
、
两点,若直线
在
轴上的截距为
,求
的最小值.
同类题3
过抛物线
的焦点
且斜率为
的直线交抛物线
于
,
两点,且
.
(1)求
的值;
(2)抛物线
上一点
,直线
(其中
)与抛物线
交于
,
两个不同的点(均与点
不重合),设直线
,
的斜率分别为
,
,
.动点
在直线
上,且满足
,其中
为坐标原点.当线段
最长时,求直线
的方程.
同类题4
设抛物线
的焦点为
,直线
与抛物线
交于不同的两点
,
,线段
中点
的横坐标为2,且
.
(Ⅰ)求抛物线
的标准方程;
(Ⅱ)若真线
(斜率存在)经过焦点
,求直线
的方程.
同类题5
(本小题满分14分)
已知抛物线
的焦点为
,
为
上异于原点的任意一点,过点
的直线
交
于另一点
,交
轴的正半轴于点
,且有
.当点
的横坐标为
时,
为正三角形.
(Ⅰ)求
的方程;
(Ⅱ)若直线
,且
和
有且只有一个公共点
,
(ⅰ)证明直线
过定点,并求出定点坐标;
(ⅱ)
的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.
相关知识点
平面解析几何
圆锥曲线
抛物线
抛物线标准方程的求法
根据定义求抛物线的标准方程
抛物线中存在定点满足某条件问题