刷题首页
题库
高中数学
题干
已知抛物线
的焦点
,抛物线上一点
点纵坐标为2,
.
(1)求抛物线的方程;
(2)已知抛物线
与直线
交于
两点,
轴上是否存在点
,使得当
变动时,总有
?说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2019-03-12 01:09:16
答案(点此获取答案解析)
同类题1
已知平面上的线段
及点
,任取
上的一点
,线段
长度的最小值称为点
到线段
的距离,记为
.设
,
,
,
,
,
,若
满足
,则
关于
的函数解析式为
.
同类题2
已知抛物线
:
的焦点为
,点
在抛物线上,且
.
(1)求抛物线
的方程;
(2)若点
为抛物线上任意一点,过该点的切线为
,过点
作切线
的垂线,垂足为
,则点
是否在定直线上,若是,求定直线的方程;若不是,说明理由.
同类题3
在平面直角坐标系
中,抛物线
的焦点为
,准线为
,过点
倾斜角为
的直线
与抛物线交于不同的两点
(其中点
在第一象限),过点
作
,垂足为
且
,则抛物线的方程是____________________________.
同类题4
已知
是抛物线
的焦点,
是抛物线上一点,且
.
(1)求抛物线
的方程;
(2)直线
与抛物线
交于
两点,若
(
为坐标原点),则直线
是否会过某个定点?若是,求出该定点坐标,若不是,说明理由.
同类题5
已知抛物线
的焦点为
,准线为
。若位于
轴上方的动点
在准线
上,线段
与抛物线
相交于点
,且
,则抛物线
的标准方程为____。
相关知识点
平面解析几何
圆锥曲线
抛物线
抛物线标准方程的求法
根据定义求抛物线的标准方程
抛物线中存在定点满足某条件问题