- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 抛物线的定义
- 抛物线标准方程的形式
- + 抛物线标准方程的求法
- 根据焦点或准线写出抛物线的标准方程
- 根据定义求抛物线的标准方程
- 根据抛物线上的点求标准方程
- 求抛物线的轨迹方程
- 求实际问题中的抛物线方程
- 抛物线的顶点、开口方向
- 抛物线的范围
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
抛物线
的焦点为
,
是抛物线上关于
轴对称的两点,点
是抛物线准线
与
轴的交点,
是面积为
的直角三角形.
(1)求抛物线的方程;
(2)若
为抛物线上第一象限的一动点,过
作
的垂线交准线
于点
,求证:直线
与抛物线相切.









(1)求抛物线的方程;
(2)若






抛物线
的焦点为
,
是抛物线上关于
轴对称的两点,点
是抛物线准线
与
轴的交点,
是面积为
的直角三角形.
(1)求抛物线的方程;
(2)点
在抛物线上,
是直线
上不同的两点,且线段
的中点都在抛物线上,试用
表示
.









(1)求抛物线的方程;
(2)点






已知双曲线
的右顶点为A,抛物线的焦点与点A重合.
(1)求抛物线的标准方程;
(2)若直线l过点A且斜率为双曲线的离心率,求直线l被抛物线截得的弦长.

(1)求抛物线的标准方程;
(2)若直线l过点A且斜率为双曲线的离心率,求直线l被抛物线截得的弦长.
在平面直角坐标系
中,已知点
,直线
:
,点
在直线
上移动,
是线段
与
轴的交点,动点
满足:
,
.
(1)求动点
的轨迹方程
;
(2)若直线
与曲线
交于
,
两点,过点
作直线
的垂线与曲线
相交于
,
两点,求
的最大值.












(1)求动点


(2)若直线










在平面直角坐标系
中,已知抛物线
上的点
到焦点
的距离为2.

(1)求抛物线的方程;
(2)如图,点
是抛物线上异于原点的点,抛物线在点
处的切线与
轴相交于点
,直线
与抛物线相交于
两点,求
面积的最小值.





(1)求抛物线的方程;
(2)如图,点







已知抛物线
的焦点为
,抛物线
与直线
的一个交点的横坐标为4.
(1)求抛物线
的方程;
(2)过点
的直线
与抛物线
交于
两点,
为坐标原点,若
,求
的面积.




(1)求抛物线

(2)过点







已知圆
,动圆
与圆
外切,且与直线
相切,该动圆圆心
的轨迹为曲线
.
(1)求曲线
的方程
(2)过点
的直线与抛物线相交于
两点,抛物线在点A的切线与
交于点N,求
面积的最小值.






(1)求曲线

(2)过点



