刷题首页
题库
高中数学
题干
抛物线
的焦点为
,
是抛物线上关于
轴对称的两点,点
是抛物线准线
与
轴的交点,
是面积为
的直角三角形.
(1)求抛物线的方程;
(2)点
在抛物线上,
是直线
上不同的两点,且线段
的中点都在抛物线上,试用
表示
.
上一题
下一题
0.99难度 解答题 更新时间:2019-12-20 11:10:32
答案(点此获取答案解析)
同类题1
已知抛物线
C
:
x
2
=−2
py
经过点(2,−1).
(Ⅰ)求抛物线
C
的方程及其准线方程;
(Ⅱ)设
O
为原点,过抛物线
C
的焦点作斜率不为0的直线
l
交抛物线
C
于两点
M
,
N
,直线
y
=−1分别交直线
OM
,
ON
于点
A
和点
B
.求证:以
AB
为直径的圆经过
y
轴上的两个定点.
同类题2
如图,有一块抛物线形状的钢板,计划将此钢板切割成等腰梯形
的形状,使得
都落在抛物线上,点
关于抛物线的轴对称,且
,抛物线的顶点到底边的距离是
,记
,梯形面积为
.
(1)以抛物线的顶点为坐标原点,其对称轴为
轴建立坐标系,使抛物线开口向下,求出该抛物线的方程;
(2)求面积
关于
的函数解析式,并写出其定义域;
(3)求面积
的最大值.
同类题3
已知抛物线
过点
.
(1)求抛物线C的方程;
(2)求过点
的直线与抛物线
交于
两个不同的点(均与点
不重合).设直线
,
的斜率分别为
,求证:
为定值.
同类题4
已知
是抛物线
上一点,经过点
的直线
与抛物线
交于
、
两点(不同于点
),直线
、
分别交直线
于点
、
.
(1)求抛物线方程及其焦点坐标;
(2)求证:以
为直径的圆恰好经过原点.
同类题5
已知抛物线
过点
.
(1)求抛物线
的方程,并求其准线方程.
(2)若平行于
(
为坐标原点)的直线
与抛物线
有公共点,且直线
与
的距离等于
,求直线
的方程.
相关知识点
平面解析几何
圆锥曲线
抛物线
抛物线标准方程的求法
根据抛物线上的点求标准方程