刷题首页
题库
高中数学
题干
抛物线
的焦点为
,
是抛物线上关于
轴对称的两点,点
是抛物线准线
与
轴的交点,
是面积为
的直角三角形.
(1)求抛物线的方程;
(2)若
为抛物线上第一象限的一动点,过
作
的垂线交准线
于点
,求证:直线
与抛物线相切.
上一题
下一题
0.99难度 解答题 更新时间:2019-12-20 11:09:11
答案(点此获取答案解析)
同类题1
已知抛物线
上一点
到其焦点的距离为
,双曲线
的左顶点为
,若双曲线的一条渐近线与直线
平行,则实数
的值是
A.
B.
C.
D.
同类题2
在平面直角坐标系中,抛物线
C
的顶点在原点
O
,过点
,其焦点
F
在
x
轴上.
求抛物线
C
的标准方程;
斜率为1且与点
F
的距离为
的直线
与
x
轴交于点
M
,且点
M
的横坐标大于1,求点
M
的坐标;
是否存在过点
M
的直线
l
,使
l
与
C
交于
P
、
Q
两点,且
若存在,求出直线
l
的方程;若不存在,说明理由.
同类题3
已知抛物线
,过其焦点
的直线与抛物线相交于
、
两点,满足
.
(1)求抛物线
的方程;
(2)已知点
的坐标为
,记直线
、
的斜率分别为
,
,求
的最小值.
同类题4
已知抛物线
的焦点为
,
是
上一点,且
.
(1)求
的方程;
(2)过点
的直线与抛物线
相交于
两点,分别过点
两点作抛物线
的切线
,两条切线相交于点
,点
关于直线
的对称点
,判断四边形
是否存在外接圆,如果存在,求出外接圆面积的最小值;如果不存在,请说明理由.
同类题5
已知
是抛物线
上的一点,
是抛物线
的焦点,
为坐标原点,若
,
,则抛物线
的方程为( )
A.
B.
C.
D.
相关知识点
平面解析几何
圆锥曲线
抛物线
抛物线标准方程的求法
根据抛物线上的点求标准方程
求直线与抛物线的交点坐标