- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 曲线与方程
- 椭圆
- 双曲线
- + 抛物线
- 抛物线的定义
- 抛物线标准方程的形式
- 抛物线标准方程的求法
- 抛物线的顶点、开口方向
- 抛物线的范围
- 直线与圆锥曲线的位置关系
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知抛物线的对称轴为坐标轴,顶点是坐标原点,准线方程为
,直线l过点(1,2),且与抛物线交于A,B两点,过A,B两点分别作抛物线的切线,设其交点为M.
(1)求抛物线的方程;
(2)求证:点M在定直线上,并求出直线的方程;
(3)求抛物线上的点到(2)中的定直线的最小距离.

(1)求抛物线的方程;
(2)求证:点M在定直线上,并求出直线的方程;
(3)求抛物线上的点到(2)中的定直线的最小距离.
已知抛物线
上一点
到其焦点的距离为
.
(Ⅰ)求
和
的值;
(Ⅱ)设
,过点
任作两直线
,
与抛物线
分别交于点
,过
的抛物线
的两切线交于
,过
的抛物线
的两切线交于
,求
的直线方程.



(Ⅰ)求


(Ⅱ)设













平面上一机器人在行进中始终保持与点F (1,0)的距离和到直线x=-1的距离相等.若机器人接触不到过点P(-1,0)且斜率为k的直线,则k的取值范围是_________ .
已知直线
过圆
的圆心且平行于
轴,曲线
上任一点
到点
的距离比到
的距离小1.
(1)求曲线
的方程;
(2)过点
(异于原点)作圆
的两条切线,斜率分别为
,过点
作曲线
的切线,斜率为
,若
成等差数列,求点
的坐标.







(1)求曲线

(2)过点







