- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 曲线与方程
- 椭圆
- 双曲线
- + 抛物线
- 抛物线的定义
- 抛物线标准方程的形式
- 抛物线标准方程的求法
- 抛物线的顶点、开口方向
- 抛物线的范围
- 直线与圆锥曲线的位置关系
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
图中是抛物线形拱桥,当水面在l时,拱顶离水面2米,水面宽4米.
(1)试如图所示建立坐标系,求这条抛物线的方程;
(2)当水下降1米后,水面宽多少?
(1)试如图所示建立坐标系,求这条抛物线的方程;
(2)当水下降1米后,水面宽多少?

已知抛物线
焦点为
,准线与
轴的交点为
.
(Ⅰ)抛物线
上的点P满足
,求点
的坐标;
(Ⅱ)设点
是抛物线
上的动点,点
是
的中点,
,求点
的轨迹方程.




(Ⅰ)抛物线



(Ⅱ)设点






在平面直角坐标系
中,抛物线
的焦点为
,双曲线
的两条渐近线分别与抛物线交于
、
两点(
、
异于坐标原点
),若直线
恰好过点
,则双曲线的渐近线方程是________.












已知抛物线C;
过点
.

求抛物线C的方程;
过点
的直线与抛物线C交于M,N两个不同的点
均与点A不重合
,设直线AM,AN的斜率分别为
,
,求证:
为定值.











已知抛物线
,焦点为
,定点
.若点M,N是抛物线C上的两相异动点,M,N不关于y轴对称,且满足
,则直线MN恒过的定点的坐标为_________.



