- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 曲线与方程
- 椭圆
- 双曲线
- + 抛物线
- 抛物线的定义
- 抛物线标准方程的形式
- 抛物线标准方程的求法
- 抛物线的顶点、开口方向
- 抛物线的范围
- 直线与圆锥曲线的位置关系
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知抛物线
的焦点
与椭圆
的右焦点重合,抛物线
的准线与
轴的交点为
,过
作直线
与抛物线
相切,切点为
,则
的面积为( )











A.32 | B.16 | C.8 | D.4 |
设抛物线
的对称轴是
轴,顶点为坐标原点
,点
在抛物线
上,
(1)求抛物线
的标准方程;
(2)直线
与抛物线
交于
、
两点(
和
都不与
重合),且
,求证:直线
过定点并求出该定点坐标.





(1)求抛物线

(2)直线









已知抛物线
:
的焦点为
,准线为
,
与
轴的交点为
,点
在抛物线
上,过点
作
于点
,如图1.已知
,且四边形
的面积为
.


(1)求抛物线
的方程;
(2)若正方形
的三个顶点
,
,
都在抛物线
上(如图2),求正方形
面积的最小值.

















(1)求抛物线

(2)若正方形






抛物线
的焦点为F,准线为l,经过F且斜率为
的直线与抛物线在x轴上方的部分相交于点A,
,垂足为K,则
的面积是( )




A.4 | B.![]() | C.![]() | D.8 |
已知直线
,点
是直线
上的动点,过点
作直线
,线段
的垂直平分线交
于点
,记点
运动的轨迹为
.
(1)求
的方程;
(2)已知
,且点
满足
,经过
的直线交
于
两点,且
为
的中点,证明:
为定值.










(1)求

(2)已知








