- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 双曲线定义的理解
- 利用双曲线定义求方程
- 利用双曲线定义求点到焦点的距离及最值
- 利用定义解决双曲线中焦点三角形问题
- 利用定义求双曲线中线段和、差的最值
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
以下四个关于圆锥曲线的命题中
①设A、B为两个定点,k为非零常数,
,则动点P的轨迹为双曲线;
②曲线
表示焦点在y轴上的椭圆,则
;
③方程2x2-5x+2=0的两根可分别作为椭圆和双曲线的离心率;
④双曲线
与椭圆
有相同的焦点.
其中真命题的序号为______(写出所有真命题的序号)
①设A、B为两个定点,k为非零常数,

②曲线


③方程2x2-5x+2=0的两根可分别作为椭圆和双曲线的离心率;
④双曲线


其中真命题的序号为______(写出所有真命题的序号)
已知平面内两个定点
和点
,
是动点,且直线
,
的斜率乘积为常数
,设点
的轨迹为
.
① 存在常数
,使
上所有点到两点
距离之和为定值;
② 存在常数
,使
上所有点到两点
距离之和为定值;
③ 不存在常数
,使
上所有点到两点
距离差的绝对值为定值;
④ 不存在常数
,使
上所有点到两点
距离差的绝对值为定值.
其中正确的命题是_______________.(填出所有正确命题的序号)








① 存在常数



② 存在常数



③ 不存在常数



④ 不存在常数



其中正确的命题是_______________.(填出所有正确命题的序号)
设圆O1和圆O2是两个相离的定圆,动圆P与这两个定圆都相切,则圆P的圆心轨迹可能是 ①两条双曲线;②一条双曲线和一条直线;③一条双曲线和一个椭圆.以上命题正确的是--()
A.① ③ | B.② ③ | C.① ② | D.① ② ③ |
以下四个命题中真命题的序号是( ).
①平面内到两定点距离之比等于常数
的点的轨迹是圆;
②平面内与定点A(-3,0)和B(3,0)的距离之差等于4的点的轨迹为
;
③点P是抛物线
上的动点,点P在x轴上的射影是M,点A的坐标是
,则
的最小值是
;
④已知P为抛物线
上一个动点,Q为圆
上一个动点,那么点P到点Q的距离与点P到抛物线的准线距离之和的最小值是
①平面内到两定点距离之比等于常数

②平面内与定点A(-3,0)和B(3,0)的距离之差等于4的点的轨迹为

③点P是抛物线




④已知P为抛物线



A.① | B.② | C.③ | D.④ |