- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 双曲线定义的理解
- + 利用双曲线定义求方程
- 利用双曲线定义求点到焦点的距离及最值
- 利用定义解决双曲线中焦点三角形问题
- 利用定义求双曲线中线段和、差的最值
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(1)若点
到直线
的距离比它到点
的距离小
,求点
的轨迹方程.
(2)设椭圆
的离心率为
,焦点在
轴上且长轴长为
,若曲线
上的点到椭圆
的两个焦点的距离的差绝对值等于
,求曲线
的标准方程.





(2)设椭圆








已知双曲线
的右焦点到渐近线的距离为3.现有如下条件:①双曲线
的离心率为
; ②双曲线
与椭圆
共焦点; ③双曲线右支上的一点
到
的距离之差是虚轴长的
倍.
请从上述3个条件中任选一个,得到双曲线
的方程为_____________.








请从上述3个条件中任选一个,得到双曲线

如图,某野生保护区监测中心设置在点
处,正西、正东、正北处有三个监测点
,且
,一名野生动物观察员在保护区遇险,发出求救信号,三个监测点均收到求救信号,
点接收到信号的时间比
点接收到信号的时间早
秒(注:信号每秒传播
千米).

(1)以
为原点,直线
为
轴建立平面直角坐标系(如题),根据题设条件求观察员所有可能出现的位置的轨迹方程;
(2)若已知
点与
点接收到信号的时间相同,求观察员遇险地点坐标,以及与检测中心
的距离;
(3)若
点监测点信号失灵,现立即以监测点
为圆心进行“圆形”红外扫描,为保证有救援希望,扫描半径
至少是多少公里?








(1)以



(2)若已知



(3)若



已知圆M:(x+m)2+y2=4n2(m,n>0且m≠n),点N(m,0),P是圆M上的动点,线段PN的垂直平分线交直线PM于点Q,点Q的轨迹为曲线C.
(1)讨论曲线C的形状,并求其方程;
(2)若m=1,且△QMN面积的最大值为
.直线l过点N且不垂直于坐标轴,l与曲线C交于A,B,点B关于x轴的对称点为D.求证:直线AD过定点,并求出该定点的坐标.
(1)讨论曲线C的形状,并求其方程;
(2)若m=1,且△QMN面积的最大值为

已知椭圆
的左右顶点分别为
,
,且
,
为
上不同两点(
,
位于
轴右侧),
,
关于
的对称点分别为为
,
,直线
、
相交于点
,直线
、
相交于点
,已知点
,则
的最小值为____________ .





















