- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 双曲线的定义
- 双曲线定义的理解
- 利用双曲线定义求方程
- 利用双曲线定义求点到焦点的距离及最值
- 利用定义解决双曲线中焦点三角形问题
- 利用定义求双曲线中线段和、差的最值
- 双曲线标准方程的形式
- 双曲线标准方程的求法
- 双曲线的焦点、焦距
- 双曲线的范围
- 双曲线的对称性
- 等轴双曲线
- 双曲线的离心率
- 双曲线的应用
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知双曲线
(a>0)的左、右焦点分别为F1,F2,离心率为
,P为双曲线右支上一点,且满足
,则△PF1F2的周长为___________.



双曲线
的左、右焦点为
,
,
为
右支上的动点(非顶点),
为
的内心.当
变化时,
的轨迹为( )









A.直线的一部分 | B.椭圆的一部分 |
C.双曲线的一部分 | D.无法确定 |
设定点
,常数
,动点
,设
,
,且
.
(1)求动点
的轨迹方程;
(2)设直线
:
与点
的轨迹交于
,
两点,问是否存在实数
使得
?若存在,求出
的值;若不存在,请说明理由.






(1)求动点

(2)设直线







