- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 椭圆的定义
- 椭圆的标准方程
- 椭圆的焦点、焦距
- 椭圆的范围
- 椭圆的对称性
- + 椭圆的离心率
- 求椭圆的离心率或离心率的取值范围
- 椭圆离心率大小与椭圆圆扁的关系
- 根据离心率求椭圆的标准方程
- 相同离心率的椭圆的方程
- 由椭圆的离心率求参数的取值范围
- 椭圆的应用
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆C的中心在原点,焦点在x轴上,短轴长为
,离心率为
.
Ⅰ
求椭圆C的方程;
Ⅱ
若过点
的直线与椭圆C交于A,B两点,且P点平分线段AB,求直线AB的方程;
Ⅲ
一条动直线l与椭圆C交于不同两点M,N,O为坐标原点,
的面积为
求证:
为定值.












椭圆有如下光学性质:从椭圆的一个焦点射出的光线,经椭圆反射,其反射光线必经过椭圆的另一个焦点,已知椭圆
长轴长为
,焦距为
,若一条光线从椭圆的左焦点出发,第一次回到该焦点所经过的路程为
,则椭圆
的离心率为______.





已知椭圆
的左顶点为A1,右焦点为F2,过点F2作垂直于x轴的直线交该椭圆于M、N两点,直线A1M的斜率为
.

(Ⅰ)求椭圆的离心率;
(Ⅱ)若△A1MN的外接圆在M处的切线与椭圆相交所得弦长为
,求椭圆方程.



(Ⅰ)求椭圆的离心率;
(Ⅱ)若△A1MN的外接圆在M处的切线与椭圆相交所得弦长为
