- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 求椭圆的离心率或离心率的取值范围
- 椭圆离心率大小与椭圆圆扁的关系
- 根据离心率求椭圆的标准方程
- + 相同离心率的椭圆的方程
- 由椭圆的离心率求参数的取值范围
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设圆
以抛物线
的焦点
为圆心,且与抛物线
有且只有一个公共点.
(1)求圆
的方程;
(2)过点
作圆
的两条切线与抛物线
分别交于点
,
和
,
,求经过
,
,
,
四点的圆
的方程.




(1)求圆

(2)过点












已知椭圆
:
,椭圆
的中心在坐标原点,焦点在
轴上,与
有相同的离心率,且过椭圆
的长轴端点.
(1)求椭圆
的标准方程;
(2)设
为坐标原点,点
分别在椭圆
和
上,若
,求直线
的方程.






(1)求椭圆

(2)设






已知:点
是离心率为
的椭圆
:
上的一点.斜率为
的直线BD交椭圆C于B、D两点,且A、B、D三点不重合.
(Ⅰ)求椭圆C的方程;
(Ⅱ)△ABD的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由?
(Ⅲ)求证:直线AB、AD的斜率之和为定值.





(Ⅰ)求椭圆C的方程;
(Ⅱ)△ABD的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由?
(Ⅲ)求证:直线AB、AD的斜率之和为定值.
已知椭圆
:
的离心率是
,过
的右焦点且垂直于椭圆的长轴的直线交椭圆于
两点,且
.
(1)求椭圆方程,
(2)过点
的动直线
与椭圆
交于不是顶点的两点
,试判断
是否为定值,若是,求出定值,若不是请说明理由·






(1)求椭圆方程,
(2)过点





如图,已知椭圆
与椭圆
的离心率相同.

(1)求
的值;
(2)过椭圆
的左顶点
作直线
,交椭圆
于另一点
,交椭圆
于
两点(点
在
之间).①求
面积的最大值(
为坐标原点);②设
的中点为
,椭圆
的右顶点为
,直线
与直线
的交点为
,试探究点
是否在某一条定直线上运动,若是,求出该直线方程;若不是,请说明理由.



(1)求

(2)过椭圆



















已知椭圆
:
的离心率
,过椭圆的左焦点
且倾斜角为
的直线与圆
相交所得弦的长度为1.
(1)求椭圆
的方程;
(2)若直线
交椭圆于不同的两点
,设
,
,其中
为坐标原点.当以线段
为直径的圆恰好过点
时,求证:
的面积为定值,并求出该定值.






(1)求椭圆

(2)若直线








已知椭圆C:
的离心率为
,且C上任意一点到两个焦点的距离之和都为4.
(Ⅰ)求椭圆C的方程;

(Ⅱ)设直线
与椭圆交于P、Q,O为坐标原点,若
,求证
为定值.


(Ⅰ)求椭圆C的方程;

(Ⅱ)设直线



(本小题满分14分)已知椭圆C:
离心率
,短轴长为
.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)如图,椭圆左顶点为A,过原点O的直线(与坐标轴不重合)与椭圆C交于P,Q两点,直线PA,QA分别与y轴交于M,N两点.试问以MN为直径的圆是否经过定点(与直线PQ的斜率无关)?请证明你的结论.



(Ⅰ)求椭圆

(Ⅱ)如图,椭圆左顶点为A,过原点O的直线(与坐标轴不重合)与椭圆C交于P,Q两点,直线PA,QA分别与y轴交于M,N两点.试问以MN为直径的圆是否经过定点(与直线PQ的斜率无关)?请证明你的结论.
