- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 求椭圆的离心率或离心率的取值范围
- + 椭圆离心率大小与椭圆圆扁的关系
- 根据离心率求椭圆的标准方程
- 相同离心率的椭圆的方程
- 由椭圆的离心率求参数的取值范围
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知
分别是椭圆的左,右焦点,现以
为圆心作一个圆恰好经过椭圆中心并且交椭圆于点
,若过
的直线
是圆
的切线,则椭圆的离心率为( )






A.![]() | B.![]() | C.![]() | D.![]() |
已知椭圆C的左右焦点分别为F1、F2,过点F2的直线与椭圆C交于点A,B,若|AF1|=|AB|=5,|F1B|=6,则椭圆C的离心率为_____.
若椭圆
:
(
)与椭圆
:
(
)的焦距相等,给出如下四个结论:
①
和
一定有交点;
②若
,则
;
③若
,则
;
④设
与
在第一象限内相交于点
,若
,则
.
其中,所有正确结论的序号是______.






①


②若


③若


④设





其中,所有正确结论的序号是______.
人造地球卫星绕地球运行遵循开普勒行星运动定律:卫星在以地球为焦点的椭圆轨道上绕地球运行时,其运行速度是变化的,速度的变化服从面积守恒规律,即卫星的向径(卫星至地球的连线)在相同的时间内扫过的面积相等.设椭圆的长轴长、焦距分别为
李明根据所学的椭圆知识,得到下列结论:

①卫星向径的最小值为
,最大值为
;
②卫星向径的最小值与最大值的比值越小,椭圆轨道越扁;
③卫星运行速度在近地点时最小,在远地点时最大
其中正确结论的个数是


①卫星向径的最小值为


②卫星向径的最小值与最大值的比值越小,椭圆轨道越扁;
③卫星运行速度在近地点时最小,在远地点时最大
其中正确结论的个数是
A.![]() | B.![]() | C.![]() | D.![]() |
如图,椭圆Ⅰ与Ⅱ有公共的左顶点和左焦点,且椭圆Ⅱ的右顶点为椭圆Ⅰ的中心.设椭圆Ⅰ与Ⅱ的长半轴长分别为
和
,半焦距分别为
和
,离心率分别为
,则下列结论正确的是( )







A.![]() | B.![]() |
C.![]() | D.![]() |
E.椭圆Ⅱ比椭圆I更扁 |
已知命题
椭圆离心离
;
椭圆离心率越小其形状越接近于圆.则下列判断中,错误的是( )



A.p或q为真,非q为假 | B.p或q为真,非p为假 |
C.p且q为假,非p为真 | D.p且q为假,p或q为真 |