- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 椭圆的定义
- + 椭圆的标准方程
- 判断方程是否表示椭圆
- 根据方程表示椭圆求参数的范围
- 根据椭圆方程求a、b、c
- 椭圆的方程与椭圆(焦点)位置的特征
- 求椭圆上点的坐标
- 根据a、b、c求椭圆标准方程
- 根据椭圆过的点求标准方程
- 轨迹问题——椭圆
- 椭圆的焦点、焦距
- 椭圆的范围
- 椭圆的对称性
- 椭圆的离心率
- 椭圆的应用
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知中心在坐标原点O的椭圆C经过点A(
),且点F(
,0)为其右焦点.
(1)求椭圆C的方程;
(2)是否存在直线l与椭圆C交于B,D两点,满足
,且原点到直线l的距离为
?若存在,求出直线l的方程;若不存在,请说明理由.


(1)求椭圆C的方程;
(2)是否存在直线l与椭圆C交于B,D两点,满足


已知椭圆C:
=1(a>0,b>0)的离心率与双曲线
=1的一条渐近线的斜率相等以原点为圆心,椭圆的短半轴长为半径的圆与直线sin
·x+cos
·y-l=0相切(
为常数).
(1)求椭圆C的方程;
(2)若过点M(3,0)的直线与椭圆C相交TA,B两点,设P为椭圆上一点,且满足
(O为坐标原点),当
时,求实数t取值范围.





(1)求椭圆C的方程;
(2)若过点M(3,0)的直线与椭圆C相交TA,B两点,设P为椭圆上一点,且满足


己知椭圆
的焦距为
,以椭圆C的右顶点A为圆心的圆与直线
相交于P,Q两点,且
.
(I)求椭圆C的标准方程和圆A的方程.
(II)不过原点的直线l与椭圆C交于M,N两点,已知直线OM,l,ON的斜率
成等比数列,记以线段OM,线段ON为直径的圆的面积分别为
的值是否为定值?若是,求出此值:若不是,说明理由.




(I)求椭圆C的标准方程和圆A的方程.
(II)不过原点的直线l与椭圆C交于M,N两点,已知直线OM,l,ON的斜率



已知椭圆
过点
,且两焦点与短轴的一个顶点的连线构成等腰直角三角形.
(Ⅰ)求椭圆
的方程;
(Ⅱ)过
的直线
交椭圆于
,
两点,试问:是否存在一个定点
,使得以
为直径的圆恒过点
?若存在,求出点
的坐标;若不存在,请说明理由.


(Ⅰ)求椭圆

(Ⅱ)过








已知动点
到定点
的距离与
到定直线
:
的距离比值是
.
(1)求点
的轨迹
的方程;
(2)曲线
与
轴交于
、
两点,直线
和
与直线
:
分别交于点
,
,试探究以
为直径的圆是否恒过定点,若是,求出所有定点的坐标;若否,请说明理由.






(1)求点


(2)曲线











(原创,较难)椭圆
的左右焦点分别为
,与y轴正半轴交于点B,若
为等腰直角三角形,且直
线被圆
所截得的弦长为2.
(1)求椭圆的方程;(2)直线l与椭圆交于点A、C,线段AC的中点为M,射线MO与椭圆交于点P,点O为
重心,探求
面积
是否为定值,若是求出这个值,若不是求
的取值范围





(1)求椭圆的方程;(2)直线l与椭圆交于点A、C,线段AC的中点为M,射线MO与椭圆交于点P,点O为




已知椭圆
的左右焦点分别为
,
,离心率为
.若点
为椭圆上一动点,
的内切圆面积的最大值为
.
(1)求椭圆的标准方程;
(2)过点
作斜率为的动直线交椭圆于
两点,
的中点为
,在
轴上是否存在定点
,使得对于任意
值均有
,若存在,求出点
的坐标,若不存在,说明理由.








(1)求椭圆的标准方程;
(2)过点









设F1,F2分别为椭圆C
(1)若椭圆C上的点
(2)设点K是(1)中所得椭圆上的动点,求线段F1K的中点的轨迹方程;
(3)已知椭圆具有性质:若M,N是椭圆C上关于原点对称的两个点,点P是椭圆上任意一点,当直线PM,PN的斜率都存在,并记为kPM,kPN时,那么kPM与kPN之积是与点P位置无关的定值,试写出双曲

(1)若椭圆C上的点

(2)设点K是(1)中所得椭圆上的动点,求线段F1K的中点的轨迹方程;
(3)已知椭圆具有性质:若M,N是椭圆C上关于原点对称的两个点,点P是椭圆上任意一点,当直线PM,PN的斜率都存在,并记为kPM,kPN时,那么kPM与kPN之积是与点P位置无关的定值,试写出双曲

已知椭圆
经过点
,且两焦点与短轴的一个端点的连线构成等腰直角三角形.
(
)求椭圆的方程.
(
)动直线
交椭圆
于
、
两点,试问:在坐标平面上是否存在一个定点
,使得以
为直径的圆恒过点
.若存在,求出点
的坐标;若不存在,请说明理由.


(

(









已知椭圆
:
的左右焦点分别为
,且离心率为
,点
为椭圆上一动点,
面积的最大值为
.
(1)求椭圆
的标准方程;
(2)设
分别为椭圆的左右顶点,过点
作
轴的垂线
,
为
上异于点
的一点,以
为直径作圆
.若过点
的直线
(异于
轴)与圆
相切于点
,且
与直线
相交于点
,试判断
是否为定值,并说明理由.







(1)求椭圆

(2)设

















