刷题首页
题库
高中数学
题干
已知椭圆
经过点
,且两焦点与短轴的一个端点的连线构成等腰直角三角形.
(
)求椭圆的方程.
(
)动直线
交椭圆
于
、
两点,试问:在坐标平面上是否存在一个定点
,使得以
为直径的圆恒过点
.若存在,求出点
的坐标;若不存在,请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2017-09-26 09:43:01
答案(点此获取答案解析)
同类题1
已知椭圆中心在原点,焦点在
x
轴上,离心率
,过椭圆的右焦点且垂直于长轴的弦长为
(Ⅰ)求椭圆的标准方程;
(Ⅱ)已知直线
与椭圆相交于
两点,且坐标原点
到直线
的距离为
,
的大小是否为定值?若是求出该定值,不是说明理由.
同类题2
在平面直角坐标系
中,椭圆
的焦距为2,且过点
.
(1)求椭圆
的方程;
(2)
是
上不同的三点,若直线
与直线
的斜率之积为
,证明:
两点的横坐标之和为常数.
同类题3
已知椭圆
经过点
,一个焦点是
.
(1)求椭圆
的方程;
(2)若倾斜角为
的直线
与椭圆
交于
两点,且
,求直线
的方程.
同类题4
已知椭圆
:
与双曲线
:
有相同左右焦点
,
,且椭圆上一点
的坐标为
.
(1)求椭圆
的方程;
(2)若直线
过
且与椭圆
交于
,
两点,若
,求直线
的斜率取值范围.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据椭圆过的点求标准方程
椭圆中存在定点满足某条件问题