刷题首页
题库
高中数学
题干
已知椭圆C:
=1(a>0,b>0)的离心率与双曲线
=1的一条渐近线的斜率相等以原点为圆心,椭圆的短半轴长为半径的圆与直线sin
·x+cos
·y-l=0相切(
为常数).
(1)求椭圆C的方程;
(2)若过点M(3,0)的直线与椭圆C相交TA,B两点,设P为椭圆上一点,且满足
(O为坐标原点),当
时,求实数t取值范围.
上一题
下一题
0.99难度 解答题 更新时间:2014-07-17 06:04:49
答案(点此获取答案解析)
同类题1
已知椭圆
的离心率为
,点A为椭圆的右顶点,点B为椭圆的上顶点,点F为椭圆的左焦点,且
的面积是
.
Ⅰ.求椭圆C的方程;
Ⅱ.设直线
与椭圆C交于P、Q两点,点P关于x轴的对称点为
(
与
不重合),则直线
与x轴交于点H,求
面积的取值范围.
同类题2
已知椭圆C:
的长轴长为8,且经过点
求椭圆的方程;
是否存在过点
的直线l交椭圆于点R、T,且满足
,若存在,求出直线l的方程;若不存在,说明理由
同类题3
已知椭圆
的离心率为
,以原点为圆心,椭圆C的短半轴长为半径的圆与直线
相切.
、
是椭圆的左、右顶点,直线
过
点且与
轴垂直.
(1)求椭圆
的标准方程;
(2)设
是椭圆
上异于
、
的任意一点,作
轴于点
,延长
到点
使得
,连接
并延长交直线
于点
,
为线段
的中点,判断直线
与以
为直径的圆
的位置关系,并证明你的结论.
同类题4
椭圆
:
,其长轴是短轴的两倍,以某短轴顶点和长轴顶点为端点的线段作为直径的圆的周长为
,直线
与椭圆交于
,
两点.
(1)求椭圆
的方程;
(2)过点
作直线
的垂线,垂足为
.若
,求点
的轨迹方程;
(3)设直线
,
,
的斜率分别为
,
,
,其中
且
.设
的面积为
.以
、
为直径的圆的面积分别为
,
,求
的取值范围.
同类题5
已知椭圆
:
的左、右焦点分别为
,
,过
的直线
与椭圆
交于
两点,
的周长为
.
(1)求椭圆
的方程;
(2)若过点
作
轴的垂线
,则
轴上是否存在一点
,使得直线
与直线
的交点恒在一条定直线上?若存在,求该点的坐标及该定直线的方程,若不存在,请说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中存在定点满足某条件问题