- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 椭圆的定义
- + 椭圆的标准方程
- 判断方程是否表示椭圆
- 根据方程表示椭圆求参数的范围
- 根据椭圆方程求a、b、c
- 椭圆的方程与椭圆(焦点)位置的特征
- 求椭圆上点的坐标
- 根据a、b、c求椭圆标准方程
- 根据椭圆过的点求标准方程
- 轨迹问题——椭圆
- 椭圆的焦点、焦距
- 椭圆的范围
- 椭圆的对称性
- 椭圆的离心率
- 椭圆的应用
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图所示,椭圆
的左、右顶点分别为
,离心率
,长轴与短轴的长度之和为
.

(Ⅰ)求椭圆
的标准方程;
(Ⅱ)在椭圆
上任取点
(与
两点不重合),直线
交
轴于点
,直线
交
轴于点
,证明:
为定值.





(Ⅰ)求椭圆

(Ⅱ)在椭圆










已知椭圆
的离心率
,且椭圆过点
.
(I)求椭圆
的标准方程;
(II)已知点
为椭圆
的下顶点,
为椭圆
上与
不重合的两点,若直线
与直线
的斜率之和为
,试判断是否存在定点
,使得直线
恒过点
,若存在,求出点
的坐标;若不存在,请说明理由.



(I)求椭圆

(II)已知点












已知椭圆
(
)的左焦点为
,点
为椭圆
上任意一点,且
的最小值为
,离心率为
.
(1)求椭圆
的方程;
(2)设O为坐标原点,若动直线
与椭圆
交于不同两点
、
(
、
都在
轴上方),且
.
(i)当
为椭圆与
轴正半轴的交点时,求直线
的方程;
(ii)对于动直线
,是否存在一个定点,无论
如何变化,直线
总经过此定点?若存在,求出该定点的坐标;若不存在,请说明理由.








(1)求椭圆

(2)设O为坐标原点,若动直线








(i)当



(ii)对于动直线



椭圆
:
的左焦点为
且离心率为
,
为椭圆
上任意一点,
的取值范围为
,
.
(1)求椭圆
的方程;
(2)如图,设圆
是圆心在椭圆
上且半径为
的动圆,过原点
作圆
的两条切线,分别交椭圆于
,
两点.是否存在
使得直线
与直线
的斜率之积为定值?若存在,求出
的值;若不存在,说明理由.









(1)求椭圆

(2)如图,设圆












已知椭圆
的离心率为
,且椭圆C过点
.
(1)求椭圆C的方程;
(2)设椭圆C的右焦点为F,直线
与椭圆C相切于点A,与直线
相交于点B,求证:
的大小为定值.



(1)求椭圆C的方程;
(2)设椭圆C的右焦点为F,直线



已知椭圆
中心在原点
,焦点在坐标轴上,直线
与椭圆
在第一象限内的交点是
,点
在
轴上的射影恰好是椭圆
的右焦点
,椭圆
另一个焦点是
,且
.
(1)求椭圆
的方程;
(2)设过点
的直线
与
交于点
(
不在
轴上),垂直于
的直线与
交于点
,与
轴交于点
.若
,且
,求直线
的方程.












(1)求椭圆

(2)设过点














已知椭圆
的中心在坐标原点,焦点在
轴上,且椭圆
的一个顶点与抛物线
的焦点重合,离心率为
.
(1)求椭圆
的标准方程;
(2)过椭圆
的右焦点
且斜率存在的直线
交椭圆
于
两点,线段
的垂直平分线交
轴于
点,证明:
为定值.





(1)求椭圆

(2)过椭圆








