刷题首页
题库
高中数学
题干
已知椭圆
的上顶点为
,右顶点为
,直线
与圆
相切.
(1)求椭圆
的方程;
(2)过点
且斜率为
的直线
与椭圆
交于
,
两点,求证:
.
上一题
下一题
0.99难度 解答题 更新时间:2019-02-21 12:16:08
答案(点此获取答案解析)
同类题1
已知椭圆
的右焦点为
,过
的直线
与
交于
,
两点,点
的坐标为
.当
轴时,
的面积为
.
(1)求椭圆
的标准方程;
(2)设直线
、
的斜率分别为
、
,证明:
.
同类题2
椭圆
和椭圆
满足椭圆
,则称这两个椭圆相似,m称为其相似比.
(1)求经过点
,且与椭圆
相似的椭圆方程;
(2)设过原点的一条射线L分别与(1)中的两个椭圆交于A、B两点(其中点A在线段OB上),求
的最大值和最小值;
(3)对于真命题“过原点的一条射线分别与相似比为2的两个椭圆
和
交于A、B两点,P为线段AB上的一点,若
,
,
成等比数列,则点P的轨迹方程为
”.请用推广或类比的方法提出类似的一个真命题,不必证明.
同类题3
给定椭圆
:
,称圆心在原点
,半径为
的圆是椭圆
的“准圆”.若椭圆
的一个焦点为
,其短轴上的一个端点到
的距离为
.
(1)求椭圆
的方程和其“准圆”方程;
(2)设椭圆短轴的一个端点为
,长轴的一个端点为
,点
是“准圆”上一动点,求三角形
面积的最大值.
同类题4
如图,椭圆
:
的离心率是
,点
在短轴
上,且
(1)求椭圆
的方程;
(2)设
为坐标原点,过点
的动直线与椭圆交于
,
两点.是否存在常数
,使得
为定值?若存在,求
的值;若不存在,请说明理由.
同类题5
已知椭圆的中心在原点,焦点在
轴上,长轴长是短轴长的2倍且经过点
,平行于
的直线
在
轴上的截距为
,
交椭圆于
两个不同点.
(1)求椭圆的标准方程以及
的取值范围;
(2)求证直线
与
轴始终围成一个等腰三角形.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中的定值问题