- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 椭圆的定义
- + 椭圆的标准方程
- 判断方程是否表示椭圆
- 根据方程表示椭圆求参数的范围
- 根据椭圆方程求a、b、c
- 椭圆的方程与椭圆(焦点)位置的特征
- 求椭圆上点的坐标
- 根据a、b、c求椭圆标准方程
- 根据椭圆过的点求标准方程
- 轨迹问题——椭圆
- 椭圆的焦点、焦距
- 椭圆的范围
- 椭圆的对称性
- 椭圆的离心率
- 椭圆的应用
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知
是右焦点为
的椭圆
:
上一动点,若
的最小值为
,椭圆的离心率为
.
(I)求椭圆
的方程;
(II)当
轴且点
在
轴上方时,设直线
与椭圆
交于不同的两点
,若
平分
,则直线
的斜率是否为定值?若是,求出这个定值;若不是,说明理由.







(I)求椭圆

(II)当









已知椭圆
的左、右焦点分别为
,
,右顶点为
,离心率为
,过点
且不与
轴重合的直线
交椭圆
于
,
两点,当直线
轴时,
的面积为
.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)若直线
的方程为
,直线
交直线
于点
,直线
交直线
于点
,线段
的中点为
,试判定
是否为定值?若是,求出该定值;若不是,请说明理由.















(Ⅰ)求椭圆

(Ⅱ)若直线











已知椭圆
过点
,
为椭圆上一点,椭圆在点
处的切线与直线
和右准线
分别交于点

(1)求椭圆的方程;
(2)
为椭圆的焦点,当点
在椭圆上移动时,请问
的值是否为定值,并说明理由.








(1)求椭圆的方程;
(2)



已知椭圆
:
离心率为
,直线
被椭圆截得的弦长为
.
(1)求椭圆方程;
(2)设直线
交椭圆
于
,
两点,且线段
的中点
在直线
上,求证:线段
的中垂线恒过定点.





(1)求椭圆方程;
(2)设直线








已知椭圆Γ:
+
=1(a>b>0)的长轴长为4,离心率为
.
(1)求椭圆Γ的标准方程;
(2)过P(1,0)作动直线AB交椭圆Γ于A,B两点,Q(4,3)为平面上一定点连接QA,QB,设直线QA,QB的斜率分别为k1,k2,问k1+k2是否为定值,如果是,则求出该定值;否则,说明理由.



(1)求椭圆Γ的标准方程;
(2)过P(1,0)作动直线AB交椭圆Γ于A,B两点,Q(4,3)为平面上一定点连接QA,QB,设直线QA,QB的斜率分别为k1,k2,问k1+k2是否为定值,如果是,则求出该定值;否则,说明理由.
已知椭圆
:
,离心率
,
是椭圆的左顶点,
是椭圆的左焦点,
,直线
:
.
(1)求椭圆
方程;
(2)直线
过点
与椭圆
交于
、
两点,直线
、
分别与直线
交于
、
两点,试问:以
为直径的圆是否过定点,如果是,请求出定点坐标;如果不是,请说明理由.








(1)求椭圆

(2)直线











已知椭圆
的右顶点为
,上顶点为
,右焦点为
.连接
并延长与椭圆
相交于点
,且
(1)求椭圆
的方程;
(2)设经过点
的直线
与椭圆
相交于不同的两点
,直线
分别与直线
相交于点
,点
.若
的面积是
的面积的2倍,求直线
的方程.








(1)求椭圆

(2)设经过点











已知椭圆
的左、右焦点为
的坐标满足圆
方程
,且圆心
满足
.
(1)求椭圆
的方程;
(2)过点
的直线
交椭圆
于
、
两点,过
与
垂直的直线
交圆
于
、
两点,
为线段
中点,若
的面积
,求
的值.






(1)求椭圆

(2)过点
















已知椭圆C的中心在坐标原点,焦点在x轴上,左顶点为A,左焦点为
,点
在椭圆C上,直线
与椭圆C交于E,F两点,直线AE,AF分别与y轴交于点M,N
Ⅰ
求椭圆C的方程;
Ⅱ
在x轴上是否存在点P,使得无论非零实数k怎样变化,总有
为直角?若存在,求出点P的坐标,若不存在,请说明理由.







