刷题宝
  • 刷题首页
题库 高中数学

题干

在平面直角坐标系中,椭圆的中心为坐标原点,左焦点为,为椭圆的上顶点,且.

(Ⅰ)求椭圆的标准方程;
(Ⅱ)已知直线:与椭圆交于,两点,直线:()与椭圆交于两点,且,如图所示.
(ⅰ)证明:;
(ⅱ)求四边形的面积的最大值.
上一题 下一题 0.99难度 解答题 更新时间:2012-04-23 11:02:15

答案(点此获取答案解析)

同类题1

(1)求焦点在轴上,长轴长为6,焦距为4的椭圆标准方程;
(2)求一个焦点为,渐近线方程为的双曲线标准方程.

同类题2

已知椭圆的一个顶点是,离心率为.
(Ⅰ)求椭圆的方程;
(Ⅱ)已知矩形的四条边都与椭圆相切,设直线AB方程为,求矩形面积的最小值与最大值.

同类题3

已知椭圆的右顶点、上顶点分别为A、B,坐标原点到直线AB的距离为,且.

(1)求椭圆C的方程;
(2)过椭圆C的左焦点的直线交椭圆于M、N两点,且该椭圆上存在点P,使得四边形MONP(图形上字母按此顺序排列)恰好为平行四边形,求直线的方程.

同类题4

已知椭圆 的左右焦点分别为和,离心率,连接椭圆的四个顶点所得四边形的面积为.
(1)求椭圆C的标准方程;
(2)设A,B是直线上的不同两点,若,求的最小值
相关知识点
  • 平面解析几何
  • 圆锥曲线
  • 椭圆
  • 椭圆的标准方程
  • 根据a、b、c求椭圆标准方程
  • 椭圆中三角形(四边形)的面积
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)