刷题首页
题库
高中数学
题干
已知椭圆
(
a
>
b
>0)的离心率为
,以椭圆的四个顶点为顶点的四边形的面积为8.
(1)求椭圆
C
的方程;
(2)如图,斜率为
的直线
l
与椭圆
C
交于
A
,
B
两点,点
P
(2,1)在直线
l
的左上方,若∠
APB
=90°,且直线
PA
,
PB
分别与
y
轴交于
M
,
N
点,求线段
MN
的长度.
上一题
下一题
0.99难度 解答题 更新时间:2020-01-28 04:52:59
答案(点此获取答案解析)
同类题1
设椭圆
的左、右焦点分别为
,
,下顶点为
,
为坐标原点,点
到直线
的距离为
,
为等腰直角三角形.
(1)求椭圆
的标准方程;
(2)直线
与椭圆
交于
,
两点,若直线
与直线
的斜率之和为
,证明:直线
恒过定点,并求出该定点的坐标.
同类题2
已知方程
表示焦点在
轴上的椭圆,且焦距为
,则
的值为( )
A.
B.
C.
D.
同类题3
已知椭圆
的焦距为2,离心率为
.
(1)求椭圆的方程;
(2)直线
经过椭圆的右焦点且不与坐标轴垂直,设直线
与椭圆交于
、
两点,
(
是坐标系的原点),证明:直线
与直线
的斜率之积为常数.
同类题4
椭圆的长轴长为10,其焦点到中心的距离为4,则这个椭圆的标准方程为( )
A.
B.
C.
或
D.
或
同类题5
设椭圆
:
的左、右焦点分别为
,
,下顶点为
,椭圆
的离心率是
,
的面积是
.
(1)求椭圆
的标准方程.
(2)直线
与椭圆
交于
,
两点(异于
点),若直线
与直线
的斜率之和为1,证明:直线
恒过定点,并求出该定点的坐标.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中的定值问题