- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 曲线与方程
- + 椭圆
- 椭圆的定义
- 椭圆的标准方程
- 椭圆的焦点、焦距
- 椭圆的范围
- 椭圆的对称性
- 椭圆的离心率
- 椭圆的应用
- 双曲线
- 抛物线
- 直线与圆锥曲线的位置关系
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
的左、右焦点分别为
,
,
为椭圆上不与左右顶点重合的任意一点,
,
分别为
的内心和重心,当
轴时,椭圆的离心率为( )








A.![]() | B.![]() | C.![]() | D.![]() |
已知在平面直角坐标系
中,中心在原点,焦点在y轴上的椭圆C与椭圆
的离心率相同,且椭圆C短轴的顶点与椭圆E长轴的顶点重合.
(1)求椭圆C的方程;
(2)若直线l与椭圆E有且仅有一个公共点,且与椭圆C交于不同两点A,B,求
的最大值.


(1)求椭圆C的方程;
(2)若直线l与椭圆E有且仅有一个公共点,且与椭圆C交于不同两点A,B,求

已知椭圆
的左、右焦点分别为
、
,且两焦点的距离为
,椭圆
上一点与两焦点构成的三角形的周长为
.
(1)求椭圆的方程;
(2)过点
的直线交椭圆
于
、
两点,若
,求直线
的方程.






(1)求椭圆的方程;
(2)过点






已知椭圆
,
为椭圆与
轴的一个交点,过原点
的直线交椭圆于
两点,且
,
.
(1)求此椭圆的方程;
(2)若
为椭圆上的点且
的横坐标
,试判断
是否为定值?若是定值,求出该定值;若不是定值,请说明理由.








(1)求此椭圆的方程;
(2)若





已知O为坐标原点,平行四边形ABCD内接于椭圆
:
,点E,F分别为AB,AD的中点,且OE,OF的斜率之积为
,则椭圆
的离心率为______.



