- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 曲线与方程
- + 椭圆
- 椭圆的定义
- 椭圆的标准方程
- 椭圆的焦点、焦距
- 椭圆的范围
- 椭圆的对称性
- 椭圆的离心率
- 椭圆的应用
- 双曲线
- 抛物线
- 直线与圆锥曲线的位置关系
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
:
的右焦点与短轴两端点构成一个面积为
的等腰直角三角形,
为坐标原点.
(1)求椭圆
的方程;
(2)设点
在椭圆
上,点
在直线
上,且
,求证:
为定值;
(3)设点
在椭圆
上运动,
,且点
到直线
的距离为常数
,求动点
的轨迹方程.





(1)求椭圆

(2)设点






(3)设点








已知椭圆E的长轴长与焦距比为2:1,左焦点F(﹣2,0),一定点为P(﹣8,0).
(1)求椭圆E的标准方程;
(2)过P的直线与椭圆交于P1、P2两点,设直线P1F、P2F的斜率分别为k1、k2,求证:k1+k2=0.
(3)求△P1P2F面积的最大值.
(1)求椭圆E的标准方程;
(2)过P的直线与椭圆交于P1、P2两点,设直线P1F、P2F的斜率分别为k1、k2,求证:k1+k2=0.
(3)求△P1P2F面积的最大值.
在平面直角坐标系
中,矩形
的一边
在
轴上,另一边
在
轴上方,且
,
,其中
,如图所示.

(1)若
为椭圆的焦点,且椭圆经过
两点,求该椭圆的方程;
(2)若
为双曲线的焦点,且双曲线经过
两点,求双曲线的方程.










(1)若


(2)若


已知在平面直角坐标系
中,动点
与两定点
连线的斜率之积为
,记点
的轨迹为曲线
.
(1)求曲线
的方程;
(2)若过点
的直线
与曲线
交于
两点,曲线
上是否存在点
使得四边形
为平行四边形?若存在,求直线
的方程,若不存在,说明理由.






(1)求曲线

(2)若过点







