- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 曲线与方程
- + 椭圆
- 椭圆的定义
- 椭圆的标准方程
- 椭圆的焦点、焦距
- 椭圆的范围
- 椭圆的对称性
- 椭圆的离心率
- 椭圆的应用
- 双曲线
- 抛物线
- 直线与圆锥曲线的位置关系
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在直角坐标系
中,已知椭圆

的上顶点坐标为
,离心率为
.
(1)求椭圆的标准方程;
(2)若椭圆上的点
的横坐标为
,且位于第一象限,点
关于
轴的对称点为点
,
是位于直线
异侧的椭圆上的动点.
①若直线
的斜率为
,求四边形
面积的最大值;
②若动点
满足
,试探求直线
的斜率是否为定值?说明理由.






(1)求椭圆的标准方程;
(2)若椭圆上的点







①若直线



②若动点



已知圆
:
内一点
,
点为圆
上任意一点,线段
的垂直平分线与线段
连线交于点
.
(1)求点
的轨迹方程;
(2)设点
的轨迹为曲线
,过点
的直线
与曲线
交于不同的两点
、
,求
的内切圆半径的最大值.








(1)求点

(2)设点








已知椭圆
的离心率为
,过椭圆E的左焦点
且与x轴垂直的直线与椭圆E相交于的P,Q两点,O为坐标原点,
的面积为
.
(1)求椭圆E的方程;
(2)点M,N为椭圆E上不同两点,若
,求证:
的面积为定值.





(1)求椭圆E的方程;
(2)点M,N为椭圆E上不同两点,若


如图中共顶点的椭圆①②与双曲线③④的离心率分别为e1,e2,e3,e4,其大小关系为( )


A.e1<e2<e3<e4 | B.e2<e1<e3<e4 |
C.e1<e2<e4<e3 | D.e2<e1<e4<e3 |