- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 曲线与方程
- + 椭圆
- 椭圆的定义
- 椭圆的标准方程
- 椭圆的焦点、焦距
- 椭圆的范围
- 椭圆的对称性
- 椭圆的离心率
- 椭圆的应用
- 双曲线
- 抛物线
- 直线与圆锥曲线的位置关系
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆M:
(a>b>0)的一个焦点F与抛物线N:y2=4x的焦点重合,且M经过点(1,
).

(1)求椭圆M的方程;
(2)已知斜率大于0且过点F的直线l与椭圆M及抛物线N自上而下分别交于A,B,C,D,如图所示,若|AC|=8,求|AB|-|CD|.



(1)求椭圆M的方程;
(2)已知斜率大于0且过点F的直线l与椭圆M及抛物线N自上而下分别交于A,B,C,D,如图所示,若|AC|=8,求|AB|-|CD|.
设复平面上点
对应的复数
(
为虚数单位)满足
,点
的轨迹方程为曲线
. 双曲线
:
与曲线
有共同焦点,倾斜角为
的直线
与双曲线
的两条渐近线的交点是
、
,
,
为坐标原点.
(1)求点
的轨迹方程
;
(2)求直线
的方程;
(3)设△PQR三个顶点在曲线
上,求证:当
是△PQR重心时,△PQR的面积是定值.

















(1)求点


(2)求直线

(3)设△PQR三个顶点在曲线


如图,已知椭圆的离心率为
,以该椭圆上的点和椭圆的左、右焦点
为顶点的三角形的周长为
,一双曲线的顶点是该椭圆的焦点,且它的实轴长等于虚轴长,设
为该双曲线上异于顶点的任一点,直线
和
与椭圆的交点分别为
和
,其中
在
轴的同一侧.
(1)求椭圆和双曲线的标准方程;
(2)是否存在题设中的点
,使得
?若存在, 求出点
的坐标;若不存在,请说明理由.










(1)求椭圆和双曲线的标准方程;
(2)是否存在题设中的点




设椭圆的对称中心为坐标原点,其中一个顶点为
,右焦点
与点
的距离为2.
(1)求椭圆的方程;
(2)是否存在经过点
的直线
,使直线
与椭圆相交于不同的两点
,
满足
?若存在,求出直线
的方程;若不存在,请说明理由.



(1)求椭圆的方程;
(2)是否存在经过点







(本小题满分12分)如图,曲线
由上半椭圆
和部分抛物线
连接而成,
的公共点为
,其中
的离心率为
.

(Ⅰ)求
的值;
(Ⅱ)过点
的直线
与
分别交于
(均异于点
),若
,求直线
的方程.









(Ⅰ)求

(Ⅱ)过点







已知椭圆
的左、右焦点分别为
,离心率
,
为右顶点,
为右准线与
轴的交点,且
.
(I)求椭圆的标准方程;
(II)设椭圆的上顶点为
,问是否存在直线
,使直线
交椭圆于
,
两点,且椭圆的左焦点恰为
的垂心?若存在,求出
的方程;若不存在,请说明理由.







(I)求椭圆的标准方程;
(II)设椭圆的上顶点为







椭圆
的两个焦点分别为
、
,点P在椭圆C上,且
,
,
.
(1)求椭圆C的方程;
(2)若直线
过圆
的圆心M交椭圆于A,B两点,且M是AB的中点,求直线
的方程.







(1)求椭圆C的方程;
(2)若直线



已知
是椭圆
(
)上一点,
,
是椭圆上的两焦点,且满足
.
(I)求椭圆方程;
(Ⅱ)设
是椭圆上任两点,且直线
,
的斜率分别为
,若存在常数
使
,求直线
的斜率.






(I)求椭圆方程;
(Ⅱ)设







已知椭圆
:
的左、右焦点分别为
,
,过
的直线
与椭圆
交于
两点,
的周长为
.
(1)求椭圆
的方程;
(2)取点
,过点
作
轴垂线
,则直线
与直线
的交点是否恒在一条定直线上?若是,求该定直线的方程;若不是,请说明理由.










(1)求椭圆

(2)取点





