刷题首页
题库
高中数学
题干
已知
是椭圆
(
)上一点,
,
是椭圆上的两焦点,且满足
.
(I)求椭圆方程;
(Ⅱ)设
是椭圆上任两点,且直线
,
的斜率分别为
,若存在常数
使
,求直线
的斜率.
上一题
下一题
0.99难度 解答题 更新时间:2011-10-21 03:23:30
答案(点此获取答案解析)
同类题1
已知命题
:方程
表示焦点在
轴上的椭圆;命题
:实数
满足
.
(Ⅰ) 若命题
中椭圆的长轴长为短轴长的2倍,求实数
的值;
(Ⅱ) 命题
是命题
的什么条件?
同类题2
如图,在平面直角坐标系
中,椭圆
的焦距为
,且过点
.
(1)求椭圆
的方程;
(2)若点
分别是椭圆
的左右顶点,直线
经过点
且垂直于
轴,点
是椭圆上异于
的任意一点,直线
交
于点
.
①设直线
的斜率为
,直线
的斜率为
,求证:
为定值;
②设过点
垂直于
的直线为
,求证:直线
过定点,并求出定点的坐标.
同类题3
已知椭圆
的右焦点为
,且点
在椭圆
上.
(1)求椭圆
的标准方程;
(2)过椭圆
上异于其顶点的任意一点
作圆
的两条切线,切点分别为
(
不在坐标轴上),若直线
在
轴,
轴上的截距分别为
,证明:
为定值.
同类题4
如图椭圆
的上下顶点为A、B,直线
:
,点P是椭圆上异于点A、B的任意一点,连结AP并延长交直线
于点N,连结BP并延长交直线
于点M,设AP、BP所在直线的斜率分别为
,若椭圆的离心率为
,且过点
,(1)求
的值,并求
最小值;(2)随着点P的变化,以MN为直径的圆是否恒过定点,若过定点,求出该定点坐标;若不过定点,请说明理由。
同类题5
已知椭圆
的中心在原点,焦点在
轴上,长轴长为
,且点
在椭圆
上.
(1)求椭圆
的方程;
(2)若点
P
在椭圆上,∠
F
2
PF
1
=60°,求△
PF
1
F
2
的面积.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中的定直线