刷题宝
  • 刷题首页
题库 高中数学

题干

已知曲线的方程是,且曲线过点两点,为坐标原点.
(1)求曲线的方程;
(2)设是曲线上两点,且,求证:直线恒与一个定圆相切.
上一题 下一题 0.99难度 解答题 更新时间:2016-06-22 05:48:41

答案(点此获取答案解析)

同类题1

若椭圆的两焦点为(-2,0)和(2,0),且椭圆过点,则椭圆方程是()
A.B.
C.D.

同类题2

设椭圆过点、.
(1)求椭圆的方程;
(2)、为椭圆的左、右焦点,直线过与椭圆交于、两点,求△面积的最大值;
(3)求动点的轨迹方程,使得过点存在两条互相垂直的直线、,且都与椭圆只有一个公共点.

同类题3

已知椭圆焦点为,且过点,椭圆第一象限上的一点到两焦点的距离之差为2.
(1)求椭圆的标准方程;
(2)求的内切圆方程.

同类题4

已知椭圆的中心在坐标原点,且经过点,它的一个焦点与抛物线的焦点重合.
(1)求椭圆的方程;
(2)斜率为的直线过点,且与抛物线交于两点,设点,的面积为,求的值;
(3)若直线过点,且与椭圆交于两点,点关于轴的对称点为,直线的纵截距为,证明:为定值.
相关知识点
  • 平面解析几何
  • 圆锥曲线
  • 椭圆
  • 椭圆的标准方程
  • 根据椭圆过的点求标准方程
  • 椭圆中的定直线
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)