- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 曲线与方程
- + 椭圆
- 椭圆的定义
- 椭圆的标准方程
- 椭圆的焦点、焦距
- 椭圆的范围
- 椭圆的对称性
- 椭圆的离心率
- 椭圆的应用
- 双曲线
- 抛物线
- 直线与圆锥曲线的位置关系
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
给出下列四个命题
已知P为椭圆
上任意一点,
,
是椭圆的两个焦点,则
的范围是
;
已知M是双曲线
上任意一点,
是双曲线的右焦点,则
;
已知直线l过抛物线C:
的焦点F,且l与C交于
,
两点,则
;
椭圆具有这样的光学性质:从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线经过椭圆的另一个焦点,今有一个水平放置的椭圆形台球盘,点
,
是它的焦点,长轴长为2a,焦距为2c,若静放在点
的小球
小球的半径忽略不计
从点
沿直线出发则经椭圆壁反射后第一次回到点
时,小球经过的路程恰好是4a.
其中正确命题的序号为______
请将所有正确命题的序号都填上























其中正确命题的序号为______


已知椭圆
:
(
)的离心率为
,直线
与以原点为圆心、以椭圆
的短半轴长为半径的圆相切.
(1)求椭圆
的方程;
(2)设椭圆
的左焦点为
,右焦点为
,直线
过点
且垂直于椭圆的长轴,动直线
垂直
于点
,线段
的垂直平分线交
于点
.
(i)求点
的轨迹
的方程;
(ii)若
为点
的轨迹
的过点
的两条相互垂直的弦,求四边形
面积的最小值.






(1)求椭圆

(2)设椭圆











(i)求点


(ii)若





如图,设抛物线
的准线与
轴交于
,焦点为
;以
为焦点,离心率
的椭圆
与抛物线
在
轴上方的交点为
,延长
交抛物线于点
是抛物线
上一动点,且
在
与
之间运动.

(1)当
时,求椭圆
的方程;
(2)当
的边长恰好是三个连续的自然数时,求
面积的最大值.

















(1)当


(2)当


如图,曲线
是以原点O为中心、
为焦点的椭圆的一部分,曲线
是以O为顶点、
为焦点的抛物线的一部分,A是曲线
和
的交点
且
为钝角.

(1)求曲线
和
的方程;
(2)过
作一条与
轴不垂直的直线,分别与曲线
依次交于B、C、D、E四点,若G为CD中点、H为BE中点,问
是否为定值?若是求出定值;若不是说明理由.









(1)求曲线


(2)过




设抛物线
的准线与
轴交于
,抛物线的焦点
,以
为焦点,离心率
的椭圆与抛物线的一个交点为
;自
引直线交抛物线于
两个不同的点,设
.
(1)求抛物线的方程椭圆的方程;
(2)若
,求
的取值范围.










(1)求抛物线的方程椭圆的方程;
(2)若


如图,过抛物线M:y=x2上一点A(点A不与原点O重合)作抛物线M的切线AB交y轴于点B,点C是抛物线M上异于点A的点,设G为△ABC的重心(三条中线的交点),直线CG交y轴于点

(Ⅰ)设A(x0,x02)(x0≠0),求直线AB的方程;
(Ⅱ)求
的值.
A. |

(Ⅰ)设A(x0,x02)(x0≠0),求直线AB的方程;
(Ⅱ)求

已知抛物线
与
椭圆
的一个交点为
,点
是
的焦点,且
.
(1)求
与
的方程;
(2)设
为坐标原点,在第一象限内,椭圆
上是否存在点
,使过
作
的垂线交抛物线
于
,直线
交
轴于
,且
?若存在,求出点
的坐标和
的面积;若不存在,说明理由.

椭圆



是


(1)求


(2)设














已知椭圆
的一个焦点恰为抛物线
的焦点
,设抛物线的准线
与
轴的交点为
,过
的直线与抛物线交于
,
两点,若以线段
为直径的圆过点
,则
______ .












已知直线
:
与直线
:
的距离为
,椭圆
:
的离心率为
.
(1)求椭圆
的标准方程;
(2)在(1)的条件下,抛物线
:
的焦点
与点
关于
轴上某点对称,且抛物线
与椭圆
在第四象限交于点
,过点
作抛物线
的切线,求该切线方程并求该直线与两坐标轴围成的三角形面积.








(1)求椭圆

(2)在(1)的条件下,抛物线









