- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 曲线与方程
- + 椭圆
- 椭圆的定义
- 椭圆的标准方程
- 椭圆的焦点、焦距
- 椭圆的范围
- 椭圆的对称性
- 椭圆的离心率
- 椭圆的应用
- 双曲线
- 抛物线
- 直线与圆锥曲线的位置关系
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
(常数
),P是曲线C上的动点,M是曲线C的右顶点,定点A的坐标为
.
(1)若M与A重合,求曲线C的焦距.
(2)若
,求
的最大值与最小值.



(1)若M与A重合,求曲线C的焦距.
(2)若


已知椭圆
的离心率为
,左、右焦点分别为
、
,
为椭圆C上一点,且
的中点B在y轴上,
.

(1)求椭圆C的标准方程:
(2)若直线
交椭圆于P、Q两点,若PQ的中点为N,O为原点,直线ON交直线
于点M,求
的最大值.









(1)求椭圆C的标准方程:
(2)若直线




椭圆
:
的离心率为
,右顶点为
,下顶点为
,且
.
(1)求椭圆
的方程;
(2)若椭圆
与直线
相交于
,
两点,直线
,
分别与
轴交于
,
两点.试探究
,
两点的横坐标的乘积是否为定值,说明理由.






(1)求椭圆

(2)若椭圆











用平面截圆柱面,当圆柱的轴与
所成角为锐角时,圆柱面的截面是一个椭圆,著名数学家
创立的双球实验证明了上述结论.如图所示,将两个大小相同的球嵌入圆柱内,使它们分别位于
的上方和下方,并且与圆柱面和
均相切.给出下列三个结论:

①两个球与
的切点是所得椭圆的两个焦点;
②若球心距
,球的半径为
,则所得椭圆的焦距为2;
③当圆柱的轴与
所成的角由小变大时,所得椭圆的离心率也由小变大.
其中,所有正确结论的序号是( )





①两个球与

②若球心距


③当圆柱的轴与

其中,所有正确结论的序号是( )
A.① | B.②③ | C.①② | D.①②③ |
如图,在平面直角坐标系xOy中,椭圆C:
(a>b>0)的左、右焦点分别为F1,F2,P为椭圆上一点(在x轴上方),连结PF1并延长交椭圆于另一点Q,且PF1=3F1Q,若PF2垂直于x轴,则椭圆C的离心率为( )



A.![]() | B.![]() | C.![]() | D.![]() |