刷题首页
题库
高中数学
题干
已知椭圆
的离心率为
,左、右焦点分别为
、
,
为椭圆
C
上一点,且
的中点
B
在
y
轴上,
.
(1)求椭圆
C
的标准方程:
(2)若直线
交椭圆于
P
、
Q
两点,若
PQ
的中点为
N
,
O
为原点,直线
ON
交直线
于点
M
,求
的最大值.
上一题
下一题
0.99难度 解答题 更新时间:2020-01-14 12:09:25
答案(点此获取答案解析)
同类题1
设椭圆
的焦距为2,且点
在椭圆上,左右顶点为
,
,左右焦点为
,
.过点
作斜率为
的直线
交椭圆
于
轴上方的点
,交直线
于点
,直线
与椭圆
的另一个交点为
,直线
与直线
交于点
.
(1)求椭圆
的标准方程;
(2)若
,求
的值;
(3)若
,求实数
的取值范围.
同类题2
如图,
,
是离心率为
的椭圆的左、右顶点,
,
是该椭圆的左、右焦点,
,
是直线
上两个动点,连接
和
,它们分别与椭圆交于点
,
两点,且线段
恰好过椭圆的左焦点
.当
时,点
恰为线段
的中点.
(1)求椭圆的方程;
(Ⅱ)判断以
为直径的圆与直线
位置关系,并加以证明.
同类题3
已知椭圆
E
的中心在坐标原点,两个焦点分别为
,
,短半轴长为2.
(1)求椭圆
E
的标准方程;
(2)过焦点
的直线
l
交椭圆
E
于
A
,
B
两点,满足
,求直线
l
的方程.
同类题4
如图,在平面直角坐标系
中,椭圆
的左顶点为
,离心率为
,过点
的直线
与椭圆
交于另一点
,点
为
轴上的一点.
(1)求椭圆
的标准方程;
(2)若
是以点
为直角顶点的等腰直角三角形,求直线
的方程.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程