刷题首页
题库
高中数学
题干
以双曲线
的顶点为焦点,离心率为
的椭圆的标准方程为( )
A.
B.
C.
D.
上一题
下一题
0.99难度 单选题 更新时间:2020-01-14 09:43:47
答案(点此获取答案解析)
同类题1
已知椭圆
C
:
的一个焦点与上下顶点构成直角三角形,以椭圆
C
的长轴长为直径的圆与直线
相切.
1
求椭圆
C
的标准方程;
2
设过椭圆右焦点且不重合于
x
轴的动直线与椭圆
C
相交于
A
、
B
两点,探究在
x
轴上是否存在定点
E
,使得
为定值?若存在,试求出定值和点
E
的坐标;若不存在,请说明理由.
同类题2
已知椭圆
经过点
,
的四个顶点围成的四边形的面积为
.
(1)求
的方程;
(2)过
的左焦点
作直线
与
交于
、
两点,线段
的中点为
,直线
(
为坐标原点)与直线
相交于点
,是否存在直线
使得
为等腰直角三角形,若存在,求出
的方程;若不存在,说明理由.
同类题3
已知椭圆
满足:过椭圆C的右焦点
且经过短轴端点的直线的倾斜角为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设
为坐标原点,若点
在直线
上,点
在椭圆C上,且
,求线段
长度的最小值.
同类题4
已知椭圆
长轴的一个端点是抛物线
的焦点,且椭圆焦点与抛物线焦点的距离是1.
(1)求椭圆
的标准方程;
(2)若
是椭圆
的左右端点,
为原点,
是椭圆
上异于
的任意一点,直线
分别交
轴于
,问
是否为定值,说明理由.
同类题5
已知椭圆C:
过点
,且离心率为
(Ⅰ)求椭圆C的方程;
(Ⅱ)若过原点的直线
与椭圆C交于P、Q两点,且在直线
上存在点M,使得
为等边三角形,求直线
的方程。
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
根据双曲线方程求a、b、c