- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 曲线与方程
- + 椭圆
- 椭圆的定义
- 椭圆的标准方程
- 椭圆的焦点、焦距
- 椭圆的范围
- 椭圆的对称性
- 椭圆的离心率
- 椭圆的应用
- 双曲线
- 抛物线
- 直线与圆锥曲线的位置关系
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
阅读下列有关光线的入射与反射的两个事实现象:现象(1):光线经平面镜反射满足入射角与反射角相等(如图);现象(2);光线从椭圆的一个焦点出发经椭圆反射后通过另一个焦点(如图).试结合,上述事实现象完成下列问题:


(Ⅰ)有一椭圆型台球桌,长轴长为2a,短轴长为2b.将一放置于焦点处的桌球击出.经过球桌边缘的反射(假设球的反射充全符合现象(2)),后第一次返回到该焦点时所经过的路程记为S,求S的值(用a,b表示);
(Ⅱ)结论:椭圆
上任点P(x0,y0)处的切线的方程为
.记椭圆C的方程为C:
,在直线x=4上任一点M向椭圆C引切线,切点分别为A,B.求证:直线lAB恒过定点:
(Ⅲ)过点T(1,0)的直线l(直线l斜率不为0)与椭圆C:
交于P、Q两点,是否存在定点S(s,0),使得直线SP与SQ斜率之积为定值,若存在求出S坐标;若不存在,请说明理由.


(Ⅰ)有一椭圆型台球桌,长轴长为2a,短轴长为2b.将一放置于焦点处的桌球击出.经过球桌边缘的反射(假设球的反射充全符合现象(2)),后第一次返回到该焦点时所经过的路程记为S,求S的值(用a,b表示);
(Ⅱ)结论:椭圆



(Ⅲ)过点T(1,0)的直线l(直线l斜率不为0)与椭圆C:

已知椭圆
的半焦距为
,圆
与椭圆
有且仅有两个公共点,直线
与椭圆
只有一个公共点.
(1)求椭圆
的标准方程;
(2)已知动直线
过椭圆
的左焦点
,且与椭圆
分别交于
两点,试问:
轴上是否存在定点
,使得
为定值?若存在,求出该定值和点
的坐标;若不存在,请说明理由.






(1)求椭圆

(2)已知动直线









已知椭圆
的半焦距为
,圆
与椭圆
有且仅有两个公共点,直线
与椭圆
只有一个公共点.
(1)求椭圆
的标准方程;
(2)已知动直线
过椭圆
的左焦点
,且与椭圆
分别交于
两点,点
的坐标为
,证明:
为定值.






(1)求椭圆

(2)已知动直线








已知椭圆
:
的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线
:
与椭圆
有且只有一个公共点T.
(Ⅰ)求椭圆
的方程及点
的坐标;
(Ⅱ)设
是坐标原点,直线
平行于
,与椭圆
交于不同的两点
、
,且与直线
交于点
,证明:存在常数
,使得
,并求
的值.





(Ⅰ)求椭圆


(Ⅱ)设











已知椭圆
的焦距为4,且过点
.

(1)求椭圆
的标准方程;
(2)设
为椭圆
上一点,过点
作
轴的垂线,垂足为
,取点
,连接
,过点
作
的垂线交
轴于点
,点
是点
关于
轴的对称点,作直线
,问这样作出的直线
是否与椭圆
一定有唯一的公共点?并说明理由.



(1)求椭圆

(2)设

















如图,已知椭圆
过点
两个焦点为
和
.圆O的方程为
.

(1)求椭圆C的标准方程;
(2)过
且斜率为
的动直线l与椭圆C交于A、B两点,与圆O交于P、Q两点(点A、P在x轴上方),当

成等差数列时,求弦PQ的长.







(1)求椭圆C的标准方程;
(2)过





已知椭圆
:
过点
,且离心率
.
(1)求椭圆
的方程;
(2)已知斜率为
的直线
与椭圆
交于两个不同点
,点
的坐标为
,设直线
与
的倾斜角分别为
,证明:
.




(1)求椭圆

(2)已知斜率为









