刷题首页
题库
高中数学
题干
已知抛物线
与
椭圆
的一个交点为
,点
是
的焦点,且
.
(1)求
与
的方程;
(2)设
为坐标原点,在第一象限内,椭圆
上是否存在点
,使过
作
的垂线交抛物线
于
,直线
交
轴于
,且
?若存在,求出点
的坐标和
的面积;若不存在,说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2018-08-11 05:20:11
答案(点此获取答案解析)
同类题1
求满足下列条件的椭圆的标准方程:
(1)两个焦点坐标分别是
,椭圆上一点
到两焦点的距离之和等于10;
(2)过点
,且与椭圆
有相同的焦点.
同类题2
已知椭圆
经过点
,且与椭圆
有相同的焦点.
(1)求椭圆
的标准方程;
(2)若动直线
与椭圆
有且只有一个公共点
,且与直线
交于点
,问:以线段
为直径的圆是否经过一定点
?若存在,求出定点
的坐标;若不存在,请说明理由.
同类题3
已知椭圆
的左焦点为
,短轴的两个端点分别为A,B,且满足:
,且椭圆经过点
(1)求椭圆
的标准方程;
(2)设过点M
的动直线
(与X轴不重合)与椭圆C相交于P,Q两点,在X轴上是否存在一定点T,无论直线
如何转动,点T始终在以PQ为直径的圆上?若有,求点T的坐标,若无,说明理由。
同类题4
已知椭圆
的中心在原点,对称轴为坐标轴,椭圆
与直线
相切于点
.
(1)求椭圆
的标准方程;
(2)若直线
:
与椭圆相交于
、
两点(
,
不是长轴端点),且以
为直径的圆过椭圆
在
轴正半轴上的顶点,求证:直线过定点,并求出该定点的坐标.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据椭圆过的点求标准方程
根据焦点或准线写出抛物线的标准方程