刷题首页
题库
高中数学
题干
如图,设抛物线
的准线与
轴交于
,焦点为
;以
为焦点,离心率
的椭圆
与抛物线
在
轴上方的交点为
,延长
交抛物线于点
是抛物线
上一动点,且
在
与
之间运动.
(1)当
时,求椭圆
的方程;
(2)当
的边长恰好是三个连续的自然数时,求
面积的最大值.
上一题
下一题
0.99难度 解答题 更新时间:2011-09-15 07:28:17
答案(点此获取答案解析)
同类题1
如图,已知椭圆
的长轴
AB
长为4,离心率
为坐标原点,过
B
的直线
l
与
x
轴垂直.
P
是椭圆上异于
A
、
B
的任意一点,
PH
⊥
x
轴,
H
为垂足,延长
HP
到点
Q
使得
HP
=
PQ
,连结
AQ
延长交直线
于点
M
,
N
为
的中点.
(1)求椭圆
的方程;
(2)证明:
Q
点在以
为直径的圆
上;
(3)试判断直线
QN
与圆
的位置关系.
同类题2
椭圆
的左、右焦点分别为
,且离心率为
,点
为椭圆上一动点,
内切圆面积的最大值为
.
(1)求椭圆的方程;
(2)设椭圆的左顶点为
,过右焦点
的直线
与椭圆相交于
两点,连接
并延长分别交直线
于
两点,以
为直径的圆是否恒过定点?若是,请求出定点坐标;若不是,请说明理由.
同类题3
已知椭圆的两焦点为
,
,离心率
.
(1)求此椭圆的方程;
(2)设直线
:
,若
与此椭圆相交于
、
两点,求
的长.
同类题4
已知椭圆
的离心率为
,以原点为圆心,椭圆的短半轴为半径的圆与直线
相切.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设
,
,
是椭圆
上关于
轴对称的任意两个不同的点,连结
交椭圆
于另一点
,证明直线
与
轴相交于定点
;
(Ⅲ)在(Ⅱ)的条件下,过点
的直线与椭圆
交于
,
两点,求
的取值范围.
同类题5
(题文)已知椭圆
离心率为
,且原点到过椭圆
的上顶点与右顶点的直线的距离为
.
(1)求椭圆
的方程;
(2)设
是椭圆
上关于
轴对称的任意两个不同的点,连接
交椭圆
于另一点
,证明:直线
与
轴相交于定点
.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的离心率
根据离心率求椭圆的标准方程
抛物线中的三角形面积问题