刷题首页
题库
高中数学
题干
中心在原点,焦点在
轴上, 若长轴长为
,且两个焦点恰好将长轴三等分,则此椭圆的方程是( )
A.
B.
C.
D.
上一题
下一题
0.99难度 单选题 更新时间:2020-01-05 09:39:05
答案(点此获取答案解析)
同类题1
已知椭圆
的左顶点
和上顶点
的连线的斜率为
,左、右焦点分别为
,
,过点
的直线
与椭圆
交于点
,与
y
轴交于点
,点
在椭圆上,且
,
(
为坐标原点).
(1)求椭圆
的标准方程;
(2)试判断
是否为定值?若是,求出该定值;若不是,请说明理由.
同类题2
已知椭圆
过点
,焦距长
,过点
的直线
交椭圆
于
,
两点.
(1)求椭圆
的方程;
(2)在
轴上是否存在一点
,使得
为定值.
同类题3
已知椭圆
的左焦点为
,左、右顶点分别为
,过点
且倾斜角为
的直线
交椭圆于
两点,椭圆
的离心率为
,
.
(1)求椭圆
的方程;
(2)若
是椭圆上不同两点,
轴,圆
过点
,且椭圆上任意一点都不在圆
内,则称圆
为该椭圆的内切圆.问椭圆
是否存在过点
的内切圆?若存在,求出点
的坐标;若不存在,说明理由.
同类题4
已知椭圆
的短轴长为
,右焦点
与抛物线
的焦点重合,
为坐标原点
(1)求椭圆
的方程;
(2)设
、
是椭圆
上的不同两点,点
,且满足
,若
,求直线
的斜率的取值范围.
同类题5
椭圆
的左、右焦点分别为
,
,上顶点
的坐标为
,若
的内切圆的面积为
,则椭圆方程为______.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程