刷题首页
题库
高中数学
题干
椭圆
E
:
(
)的离心率为
,右焦点为
F
,上顶点为
B
,且
.
(1)求椭圆
E
的方程:
(2)是否存在直线
l
,使得
l
交椭圆
E
于
M
,
N
两点,且
F
恰是
的垂心?若存在,求出直线
l
的方程:若不存在,说明理由,
上一题
下一题
0.99难度 解答题 更新时间:2020-01-04 11:47:33
答案(点此获取答案解析)
同类题1
(江苏省南京师范大学附属中学2018届高三5月模拟考试数学试题)如图,已知椭圆
的左、右焦点分别为
,若椭圆
经过点
,离心率为
,直线
过点
与椭圆
交于
两点.
(1)求椭圆
的方程;
(2)若点
的内心(三角形三条内角平分线的交点),求
面积的比值;
(3)设点
在直线
上的射影依次为点
,连结
,试问当直线
的倾斜角变化时,直线
是否相交于定点
?若是,请求出定点
的坐标;若不是,请说明理由.
同类题2
已知椭圆
E
:
(
a
>
b
>0)的离心率
e
.
(1)若点
P
(1,
)在椭圆
E
上,求椭圆
E
的标准方程;
(2)若
D
(2,0)在椭圆内部,过点
D
斜率为
的直线交椭圆
E
于
M
.
N
两点,|
MD
|=2|
ND
|,求椭圆
E
的方程.
同类题3
已知椭圆
的两个焦点分别为
,离心率为
,过
的直线
与椭圆
交于
两点,且
的周长为8.
(1)求椭圆
的方程;
(2)直线
过点
,且与椭圆
交于
两点,求
面积的最大值.
同类题4
已知点
,椭圆
E
:
(
)的离心率为
,
F
是椭圆
E
的右焦点,直线
AF
的斜率为
,
O
为坐标原点.
(1)求
E
的方程;
(2)设过点
且斜率为
k
的直线
l
与椭圆
E
交于不同的两点
M
、
N
,且
为锐角,求
k
的取值范围.
同类题5
已知椭圆
的离心率为
,抛物线
的焦点是
,
是抛物线上的点,
H
为直线
上任一点,
A
,
B
分别为椭圆
C
的上、下顶点,且
A
,
B
,
H
三点的连线可以构成三角形.
(Ⅰ)求椭圆
C
的方程;
(Ⅱ)直线
HA
,
HB
与椭圆
C
的另一交点分别为点
D
,
E
,求证:直线
DE
过定点.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的离心率
根据离心率求椭圆的标准方程
椭圆中的定直线