- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 直线与方程
- 圆与方程
- + 圆锥曲线
- 曲线与方程
- 椭圆
- 双曲线
- 抛物线
- 直线与圆锥曲线的位置关系
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知抛物线
的焦点为F,过点F的直线l与抛物线C相交于A,B两点,且
,直线AO,BO分别交直线
于点M,N.
(1)求抛物线C的方程;
(2)求
的最小值.



(1)求抛物线C的方程;
(2)求

设抛物线
的焦点为
,点
是
上一点,且
的中点坐标为
.
(1)求抛物线
的标准方程;
(2)动直线
过点
,且与抛物线
交于
两点,点
与点
关于
轴对称(点
与点
不重合),求证:直线
恒过定点.






(1)求抛物线

(2)动直线










过原点作两条互相垂直的直线分别交抛物线
于
两点(
均不与坐标原点重合),已知抛物线的焦点
到直线
距离的最大值为3,则
( )






A.![]() | B.2 | C.4 | D.6 |
已知抛物线
的焦点坐标为
(1)求抛物线的标准方程.
(2)若过
的直线
与抛物线交于
两点,在抛物线上是否存在定点
,使得以
为直径的圆过定点
.若存在,求出点
,若不存在,说明理由.


(1)求抛物线的标准方程.
(2)若过












设抛物线C:
的焦点为F,抛物线上的点A到
轴的距离等于
.
(1)求抛物线C的方程;
(2)已知经过抛物线C的焦点F的直线
与抛物线交于A,B两点,证明:
为定值.



(1)求抛物线C的方程;
(2)已知经过抛物线C的焦点F的直线


已知动圆
过点
且与直线
相切,圆心
的轨迹为曲线
.
(1)求曲线
的方程;
(2)若
是曲线
上的两个点且直线
过
的外心,其中
为坐标原点,求证:直线
过定点.





(1)求曲线

(2)若






已知圆,直线
.动圆
与圆
相外切,且与直线
相切.设动圆圆心
的轨迹为
.
(Ⅰ)求曲线的方程;
(Ⅱ)若点,
是
上的两个动点,
为坐标原点,且
,求证:直线
恒过定点.