- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 直线与方程
- 圆与方程
- + 圆锥曲线
- 曲线与方程
- 椭圆
- 双曲线
- 抛物线
- 直线与圆锥曲线的位置关系
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,已知抛物线C的顶点在原点,焦点F在
轴上,抛物线上的点A到F的距离为2,且A的横坐标为1. 过A点作抛物线C的两条动弦AD、AE,且AD、AE的斜率满足

(1)求抛物线C的方程;
(2)直线DE是否过某定点?若过某定点,请求出该点坐标;若不过某定点,请说明理由.



(1)求抛物线C的方程;
(2)直线DE是否过某定点?若过某定点,请求出该点坐标;若不过某定点,请说明理由.
已知倾斜角为
的直线经过抛物线
的焦点F,与抛物线G相交于A、B两点,且
.
(1)求抛物线G的方程;
(2)过点
的两条直线
、
分别交抛物线G于点C、D和 E、F,线段CD和EF的中点分别为M、N.如果直线
与
的倾斜角互余,求证:直线MN经过一定点.



(1)求抛物线G的方程;
(2)过点





如图,已知顶点
,
,动点
分别在
轴,
轴上移动,延长
至点
,使得
,且
.

(1)求动点
的轨迹
;
(2)过点
分别作直线
交曲线于
两点,若直线
的倾斜角互补,证明:直线的斜率为定值;
(3)过点
分别作直线
交曲线于
两点,若
,直线
是否经过定点?若是,求出该定点,若不是,说明理由.










(1)求动点


(2)过点




(3)过点





已知抛物线
:
的焦点
与椭圆
:
的右焦点重合,过焦点
的直线
交抛物线于
两点.
(1)求抛物线
的方程;
(2)记抛物线
的准线与
轴交于点
,试问是否存在
,使得
(
),且
都成立?若存在,求实数
的值;若不存在,请说明理由.








(1)求抛物线

(2)记抛物线








已知抛物线
的准线与
轴交于
点,
为抛物线
的焦点,过
点斜率为
的直线
与抛物线
交于
两点.
(1)若
,求
的值;
(2)是否存在这样的
,使得抛物线
上总存在点
满足
,若存在,求
的取值范围;若不存在,说明理由.










(1)若


(2)是否存在这样的





设抛物线
的焦点为
,准线为
.已知以
为圆心,半径为4的圆与
交于
、
两点,
是该圆与抛物线
的一个交点,
.
(1)求
的值;
(2)已知点
的纵坐标为
且在
上,
、
是
上异于点
的另两点,且满足直线
和直线
的斜率之和为
,试问直线
是否经过一定点,若是,求出定点的坐标,否则,请说明理由.










(1)求

(2)已知点











已知点
,过点
作与
轴平行的直线
,点
为动点
在直线
上的投影,且满足
.
(1)求动点
的轨迹
的方程;
(2)已知点
为曲线
上的一点,且曲线
在点
处的切线为
,若
与直线
相交于点
,试探究在
轴上是否存在点
,使得以
为直径的圆恒过点
?若存在,求出点
的坐标,若不存在,说明理由.








(1)求动点


(2)已知点












