- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 直线与方程
- 圆与方程
- + 圆锥曲线
- 曲线与方程
- 椭圆
- 双曲线
- 抛物线
- 直线与圆锥曲线的位置关系
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图已知抛物线
的焦点为
,圆
,直线
:
与抛物线和圆从下至上顺次交于四点
,
,
,
.

(1)若
,求
的值;
(2)若直线
于点
,直线
与抛物线交于点
,
,设
,
的中点分别为
,求证:直线
过定点.










(1)若


(2)若直线









已知直线
经过抛物线
的焦点且与此抛物线交于
两点,
,直线
与抛物线
交于
两点,且
两点在
轴的两侧.
(1)证明:
为定值;
(2)求直线
的斜率的取值范围;
(3)已知函数
在
处取得最小值
,求线段
的中点
到点
的距离的最小值(用
表示)









(1)证明:

(2)求直线

(3)已知函数







在平面直角坐标系中,动点
(
)到点
的距离与到
轴的距离之差为1.
(1)求点
的轨迹
的方程;
(2)若
,过点
作任意一条直线交曲线
于
,
两点,试证明:
是一个定值.




(1)求点


(2)若






已知三点
,
,
,曲线
上任意一点
满足
.
(1)求
的方程;
(2)动点
在曲线
上,
是曲线
在
处的切线.问:是否存在定点
使得
与
都相交,交点分别为
,且
与
的面积之比为常数?若存在,求
的值;若不存在,说明理由.






(1)求

(2)动点













(江苏省南京市2018届高三第三次模拟考试数学试题)在平面直角坐标系
中,抛物线
的焦点为
,点
是抛物线
上一点,且
.
(1)求
的值;
(2)若
为抛物线
上异于
的两点,且
.记点
到直线
的距离分别为
,求
的值.






(1)求

(2)若







