- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 空间直角坐标系
- 空间向量及其运算
- + 空间向量的应用
- 直线的方向向量
- 平面的法向量
- 空间位置关系的向量证明
- 空间距离的向量求法
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,四棱锥
的底面
是直角梯形,
,
,
,点
在线段
上,且
,
,
平面
.

(1)求证:平面
平面
;
(2)当四棱锥
的体积最大时,求平面
与平面
所成二面角的余弦值.












(1)求证:平面


(2)当四棱锥



如图,四棱锥
中,底面
为平行四边形,
,
是棱PD的中点,且
,
.
(I)求证:
; (Ⅱ)求二面角
的大小;
(Ⅲ)若
是
上一点,且直线
与平面
成角的正弦值为
,求
的值.






(I)求证:


(Ⅲ)若







已知△ABC为等腰直角三角形,
,
,
分别是边
和
的中点,现将
沿
折起,使平面
,
分别是边
和
的中点,平面
与
,
分别交于
,
两点.
















(1)求证:;
(2)求二面角的余弦值;
(3)求的长.