- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 空间直角坐标系
- 空间向量及其运算
- + 空间向量的应用
- 直线的方向向量
- 平面的法向量
- 空间位置关系的向量证明
- 空间距离的向量求法
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在长方体
中,
,
,
为
的中点.

(1)求二面角
的大小;
(2)在矩形
内部是否存在点
,使
平面
,若存在,求出其中的一个点
,若不存在,请说明理由.






(1)求二面角

(2)在矩形





如图,在四棱锥P-ABCD中,底面ABCD为菱形,∠BAD=60°,Q为AD的中点.

(Ⅰ)若PA=PD,求证:平面PQB⊥平面PAD;
(Ⅱ)点M在线段PC上,PM=tPC,试确定实数t的值,使PA∥平面MQB;
(Ⅲ)在(Ⅱ)的条件下,若平面PAD⊥平面ABCD,且PA=PD=AD=2,求二面角M-BQ-C的大小.

(Ⅰ)若PA=PD,求证:平面PQB⊥平面PAD;
(Ⅱ)点M在线段PC上,PM=tPC,试确定实数t的值,使PA∥平面MQB;
(Ⅲ)在(Ⅱ)的条件下,若平面PAD⊥平面ABCD,且PA=PD=AD=2,求二面角M-BQ-C的大小.
(衡水金卷2018年普通高等学校招生全国统一考试模拟试卷)如图,在三棱柱
中,侧棱
底面
,且
,
是棱
的中点,点
在侧棱
上运动.
(1)当
是棱
的中点时,求证:
平面
;
(2)当直线
与平面
所成的角的正切值为
时,求二面角
的余弦值.








(1)当




(2)当直线





如图,长方体
中,
,
,点
,
,
分别为
,
,
的中点,过点
的平面
与平面
平行,且与长方体的面相交,交线围成一个几何图形.

(1)在图中画出这个几何图形(说明画法,不需要说明理由);
(2)求二面角
的余弦值.













(1)在图中画出这个几何图形(说明画法,不需要说明理由);
(2)求二面角
