- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 直线的方向向量
- 平面的法向量
- + 空间位置关系的向量证明
- 空间距离的向量求法
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,已知梯形
中,
,
,
,四边形
为矩形,
,平面
平面
.

(1)求证:
平面
;
(2)在线段
上是否存在点
,使得直线
与平面
所成角的正弦值为
,若存在,求出线段
的长.









(1)求证:


(2)在线段






如图所示的多面体中,EA⊥平面ABC,DB⊥平面ABC,AC⊥BC,CM⊥AB,垂足为M,且AE=AC=2
,BD=2BC=4,

(1)求证:CM⊥ME;
(2)求二面角A﹣MC﹣E的余弦值.
(3)在线段DC上是否存在一点N,使得直线BN∥平面EMC,若存在,求出
的值;若不存在,请说明理由.


(1)求证:CM⊥ME;
(2)求二面角A﹣MC﹣E的余弦值.
(3)在线段DC上是否存在一点N,使得直线BN∥平面EMC,若存在,求出

已知三棱锥P-ABC中,PA⊥ABC,AB⊥AC,PA=AC=½AB,N为AB上一点,AB=4AN,M,S分别为PB,BC的中点.

(Ⅰ)证明:CM⊥SN;
(Ⅱ)求SN与平面CMN所成角的大小.

(Ⅰ)证明:CM⊥SN;
(Ⅱ)求SN与平面CMN所成角的大小.
如图,三棱柱
中,
平面
,
,
,点
在线段
上,且
,
.

(1)试用空间向量证明直线
与平面
不平行;
(2)设平面
与平面
所成的锐二面角为
,若
,求
的长;
(3)在(2)的条件下,设平面
平面
,求直线
与平面
的所成角.










(1)试用空间向量证明直线


(2)设平面





(3)在(2)的条件下,设平面




四棱锥
中,
平面
,底面四边形
为直角梯形,
,
,
,
.

(Ⅰ)求证:平面
平面
;
(Ⅱ)求二面角
的余弦值;
(Ⅲ)
为
中点,在四边形
所在的平面内是否存在一点
,使得
平面
,若存在,求三角形
的面积;若不存在,请说明理由.









(Ⅰ)求证:平面


(Ⅱ)求二面角

(Ⅲ)






